Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs

2006 ◽  
Vol 290 (4) ◽  
pp. E612-E621 ◽  
Author(s):  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Scot R. Kimball ◽  
...  

Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and valine has not been investigated in this experimental model. The left ventricular wall of the heart grows faster than the right ventricular wall during the first 10 days of postnatal life in the pig. Therefore, the effects of individual BCAA on protein synthesis in individual skeletal muscles and in the left and right ventricular walls were examined. Fasted pigs were infused with 0 or 400 μmol·kg−1·h−1 leucine, isoleucine, or valine to raise individual BCAA to fed levels. Fractional rates of protein synthesis and indexes of translation initiation were measured after 60 min. Infusion of leucine increased ( P < 0.05) phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein-1 and increased ( P < 0.05) the amount and phosphorylation of eIF4G associated with eIF4E in longissimus dorsi and masseter muscles and in both ventricular walls. Leucine increased ( P < 0.05) the phosphorylation of ribosomal protein (rp)S6 kinase and rpS6 in longissimus dorsi and masseter but not in either ventricular wall. Leucine stimulated ( P < 0.05) protein synthesis in longissimus dorsi, masseter, and the left ventricular wall. Isoleucine and valine did not increase translation initiation factor activation or protein synthesis rates in skeletal or cardiac muscles. The results suggest that the postprandial rise in leucine, but not isoleucine or valine, acts as a nutrient signal to stimulate protein synthesis in cardiac and skeletal muscles of neonates by increasing eIF4E availability for eIF4F complex assembly.

2002 ◽  
Vol 93 (3) ◽  
pp. 1168-1180 ◽  
Author(s):  
Scot R. Kimball ◽  
Peter A. Farrell ◽  
Leonard S. Jefferson

Protein synthesis in skeletal muscle is modulated in response to a variety of stimuli. Two stimuli receiving a great deal of recent attention are increased amino acid availability and exercise. Both of these effectors stimulate protein synthesis in part through activation of translation initiation. However, the full response of translation initiation and protein synthesis to either effector is not observed in the absence of a minimal concentration of insulin. The combination of insulin and either increased amino acid availability or endurance exercise stimulates translation initiation and protein synthesis in part through activation of the ribosomal protein S6 protein kinase S6K1 as well as through enhanced association of eukaryotic initiation factor eIF4G with eIF4E, an event that promotes binding of mRNA to the ribosome. In contrast, insulin in combination with resistance exercise stimulates translation initiation and protein synthesis through enhanced activity of a guanine nucleotide exchange protein referred to as eIF2B. In both cases, the amount of insulin required for the effects is low, and a concentration of the hormone that approximates that observed in fasting animals is sufficient for maximal stimulation. This review summarizes the results of a number of recent studies that have helped to establish our present understanding of the interactions of insulin, amino acids, and exercise in the regulation of protein synthesis in skeletal muscle.


2007 ◽  
Vol 293 (6) ◽  
pp. E1597-E1605 ◽  
Author(s):  
Agus Suryawan ◽  
Renan A. Orellana ◽  
Hanh V. Nguyen ◽  
Asumthia S. Jeyapalan ◽  
Jillian R. Fleming ◽  
...  

Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to translation initiation and how these responses change with development. Overnight-fasted 6- ( n = 4/group) and 26-day-old ( n = 6/ group) pigs were studied during 1) euinsulinemic-euglycemiceuaminoacidemic conditions (controls), 2) euinsulinemic-euglycemichyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, increased the phosphorylation of protein kinase B (PKB) and tuberous sclerosis 2 (TSC2). Both INS and AA increased protein synthesis and the phosphorylation of mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase-1, and eukaryotic initiation factor (eIF)4E-binding protein 1 (4E-BP1), and these responses were higher in 6-day-old compared with 26-day-old pigs. Both INS and AA decreased the binding of 4E-BP1 to eIF4E and increased eIF4E binding to eIF4G; these effects were greater in 6-day-old than in 26-day-old pigs. Neither INS nor AA altered the composition of mTORC1 (raptor, mTOR, and GβL) or mTORC2 (rictor, mTOR, and GβL) complexes. Furthermore, neither INS, AA, nor age had any effect on the abundance of Rheb and the phosphorylation of AMP-activated protein kinase and eukaryotic elongation factor 2. Our results suggest that the activation by insulin and amino acids of signaling components leading to translation initiation is developmentally regulated and parallels the developmental decline in protein synthesis in skeletal muscle of neonatal pigs.


2000 ◽  
Vol 278 (1) ◽  
pp. E76-E82 ◽  
Author(s):  
O. Jameel Shah ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

Glucocorticoids are diabetogenic factors that not only antagonize the action of insulin in target tissues but also render these tissues catabolic. Therefore, in rats, we endeavored to characterize the effects in skeletal muscle of glucocorticoids on translation initiation, a regulated process that, in part, governs overall protein synthesis through the modulated activities of eukaryotic initiation factors (eIFs). Four hours after intraperitoneal administration of dexamethasone (100 μg/100 g body wt), protein synthesis in skeletal muscle was reduced to 59% of the value recorded in untreated control animals. Furthermore, translation initiation factor eIF4E preferred association with its endogenous inhibitor 4E-BP1 rather than eIF4G. Dexamethasone treatment resulted in dephosphorylation of both 4E-BP1 and the 40S ribosomal protein S6 kinase concomitant with enhanced phosphorylation of eIF4E. Moreover, the guanine nucleotide exchange activity of eIF2B was unaffected as was phosphorylation of the α-subunit of eIF2. Hence glucocorticoids negatively modulate the activation of a subset of the protein synthetic machinery, thereby contributing to the catabolic properties of this class of hormones in vivo.


2014 ◽  
Vol 306 (1) ◽  
pp. E91-E99 ◽  
Author(s):  
Scott M. Wheatley ◽  
Samer W. El-Kadi ◽  
Agus Suryawan ◽  
Claire Boutry ◽  
Renán A. Orellana ◽  
...  

Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite β-hydroxy-β-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 μmol·kg body wt−1·h−1 for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.


2007 ◽  
Vol 17 (s1) ◽  
pp. S47-S57 ◽  
Author(s):  
René Koopman

Resistance exercise can effectively result in an increase in muscle mass, or hypertrophy, which generally becomes apparent after several weeks of training. Muscle hypertrophy requires muscle protein synthesis to exceed protein breakdown during an extended time period. It has been firmly established that the interaction between exercise and nutrition (i.e., protein intake) is necessary to attain net protein accretion in skeletal muscle. The stimulation of protein synthesis is caused in part by stimulation of mRNA translation initiation. There is relatively little information on the response of intracellular signaling controlling mRNA translation to exercise and nutrition, especially in humans, but the available data in humans seem to suggest that a single bout of resistance exercise does not substantially enhance PI-3 kinase/mTOR signaling during the first 2 h after exercise. Moreover, it is demonstrated that the ingestion of protein or amino acids after exercise is crucial to further stimulate molecular signaling that controls translation initiation. The aim of this review is to provide an overview of the intracellular signaling related to translational control and to provide a summary of the current knowledge about the response of the signaling pathways controlling the anabolic response to exercise and nutrient intake in vivo in humans.


2008 ◽  
Vol 295 (4) ◽  
pp. E876-E883 ◽  
Author(s):  
Fiona A. Wilson ◽  
Agus Suryawan ◽  
Renán A. Orellana ◽  
Hanh V. Nguyen ◽  
Asumthia S. Jeyapalan ◽  
...  

Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) ( P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level ( P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation ( P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Humberto Nicastro ◽  
Claudia Ribeiro da Luz ◽  
Daniela Fojo Seixas Chaves ◽  
Luiz Roberto Grassmann Bechara ◽  
Vanessa Azevedo Voltarelli ◽  
...  

Skeletal muscle protein turnover is modulated by intracellular signaling pathways involved in protein synthesis, degradation, and inflammation. The proinflammatory status of muscle cells, observed in pathological conditions such as cancer, aging, and sepsis, can directly modulate protein translation initiation and muscle proteolysis, contributing to negative protein turnover. In this context, branched-chain amino acids (BCAAs), especially leucine, have been described as a strong nutritional stimulus able to enhance protein translation initiation and attenuate proteolysis. Furthermore, under inflammatory conditions, BCAA can be transaminated to glutamate in order to increase glutamine synthesis, which is a substrate highly consumed by inflammatory cells such as macrophages. The present paper describes the role of inflammation on muscle remodeling and the possible metabolic and cellular effects of BCAA supplementation in the modulation of inflammatory status of skeletal muscle and the consequences on protein synthesis and degradation.


1998 ◽  
Vol 275 (5) ◽  
pp. E814-E820 ◽  
Author(s):  
Fumiaki Yoshizawa ◽  
Scot R. Kimball ◽  
Thomas C. Vary ◽  
Leonard S. Jefferson

The effect of dietary protein on the initiation of mRNA translation was examined in rats starved for 18 h and then fed isocaloric diets containing either 20% protein (20P) or no added protein (0P). Feeding the 20P diet, but not the 0P diet, stimulated protein synthesis in skeletal muscle and liver by 38 and 41%, respectively. The stimulation was associated with reduced binding of eukaryotic initiation factor (eIF) 4E to the translational repressor 4E-BP1, increased formation of the active eIF4E-eIF4G complex, and increased phosphorylation of 4E-BP1. In contrast, feeding a 0P diet had no effect on any of these parameters. Feeding a 20P diet resulted in partial dephosphorylation of eIF4E in both tissues. In liver, refeeding a 0P diet also resulted in partial eIF4E dephosphorylation, suggesting that the phosphorylation state of eIF4E is not important in the stimulation of protein synthesis under these conditions. Finally, plasma insulin concentrations were the same in rats fed either diet (14.8 ± 4.9 vs. 15.5 ± 4.5 μU/ml for 20P and 0P groups, respectively), suggesting that feeding-induced changes in plasma insulin are not sufficient to stimulate protein synthesis. Instead, a combination of dietary protein and insulin may be required to stimulate translation initiation.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Junya Takegaki ◽  
Riki Ogasawara ◽  
Karina Kouzaki ◽  
Satoshi Fujita ◽  
Koichi Nakazato ◽  
...  

Abstract Insufficient duration of recovery between resistance exercise bouts reduces the effects of exercise training, but the influence on muscle anabolic responses is not fully understood. Here, we investigated the changes in the distribution of eukaryotic initiation factor (eIF) 4E, a key regulator of translation initiation, and related factors in mouse skeletal muscle after three successive bouts of resistance exercise with three durations of recovery periods (72 h: conventional, 24 h: shorter, and 8 h: excessively shorter). Bouts of resistance exercise dissociated eIF4E from eIF4E binding protein 1, with the magnitude increasing with shorter recovery. Whereas bouts of resistance exercise with 72 h recovery increased the association of eIF4E and eIF4G, those with shorter recovery did not. Similar results were observed in muscle protein synthesis. These results suggest that insufficient recovery inhibited the association of eIF4E and eIF4G, which might cause attenuation of protein synthesis activation after bouts of resistance exercise.


Sign in / Sign up

Export Citation Format

Share Document