Effect of nicotine on gastric acid secretion: evidence of electrogenic pump theory.

1977 ◽  
Vol 232 (3) ◽  
pp. E251
Author(s):  
M A Dinno ◽  
M Ando ◽  
F H Dinno ◽  
K C Huang ◽  
W S Rehm

In vitro studies on H+ secretion, potential difference (PD), short-circuit current (Isc), and resistance across stripped mucosa of frog stomach in Cl-medium have shown that addition of nicotine in the serum bathing fluid caused a marked inhibition of the H+ secretory rate and an increase of PD and Isc without change of the transmucosal resistance. A dose-response correlation was indicated. During the first 8 min, the changes in the measured parameters, namely, PD versus Ih and Isc versus Ih, were linear. After 8 min, a deviation from linearity was observed. From the slope of the regression lines, the resistance of the electrogenic Cl- pump on the mucosal membrane (Rcl) was calculated to be 127 omega cm2 and the resistance of the chloride pathway on the serosal side (Rcl) was 407 omega cm2. The resistance of the H+ pump on the mucosal membrane (Rh) in Cl- medium was estimated to be 385 omega cm2. The sum of the emf's of the Cl+ pump on the mucosal membrane and of the Cl- gradient across the serosal membrane, namely Ecl + Ecl, was found to be 35 mV. The presence of such linear relationships between measured versus the H+ rate and Isc versus Ih lends support to the electrogenic theory of HCl secretion.

1975 ◽  
Vol 228 (2) ◽  
pp. 511-517 ◽  
Author(s):  
PK Rangachari

Ba++ added to the nutrient solution bathing the resting frog stomach increased resistance, decreased the PD, and stimulated acid secretion. Under short-circuit conditions, the increase in H+-secretory rate was accompanied by a decrease in short-circuit current (I-sc). These changes were reversed by NaSCN (10 mM), suggesting that Ba++ had not impaired the current-generating mechanism per se. Histamine-induced acid secretion was associated with an increase in net Cl- flux, particularly in the N yields S flux (JNS). Ba++ increased acid secretion with no increase in JNS and a decrease in net Cl- flux. The effects of Ba++ were amplified by low-Cl- solutions. Histamine, in the presence of Ba++ and low-Cl- solutions, increased acid secretion and transmucosal resistance, suggesting the operation of a neutral pump in the secretion of HCl. It is concluded that Ba++ limits Cl- entry and also acts as a secretagogue.


1985 ◽  
Vol 248 (5) ◽  
pp. C410-C418 ◽  
Author(s):  
E. Grasset ◽  
J. Bernabeu ◽  
M. Pinto

Human colonic carcinoma Caco-2 cells grown in vitro form epithelial layers of highly polarized cells. Unlike colonic adsorptive cells they possess a mucosal membrane with very limited ionic conductance, even after exposure to aldosterone. When grown on filters, Caco-2 cells were sensitive to various secretagogues; these included 10(-5) M dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) and 10(-10) M vasoactive intestinal peptide, both of which, added serosally, enhanced the short-circuit current. The same applied to mucosal forskolin. Caco-2 cell sensitivity to serosal epinephrine was lower. Ion substitutions and 22Na-36Cl flux measurements indicated the possibility of secretagogue-dependent chloride secretion. Measurements on cells grown on Petri dishes and exposed to 1 mM DBcAMP for 1 h enabled detection of more profound modifications. Sustained 20-mV cell depolarization and a large reduction in the relative electrical resistance of the mucosal membrane were concomitant with a sizable decrease in 36Cl accumulation. These results suggest that Caco-2 cells, which to some extent resemble colonic crypt cells, possess the cAMP-dependent mucosal chloride conductance characteristic of secretory cells.


1962 ◽  
Vol 203 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Warren S. Rehm

Certain findings seemed to invalidate the author's separate site theory of HCl formation (separate H+ and Cl– ion electrogenic mechanisms). These findings are analyzed and further pertinent experimental data on the frog's stomach are presented. With an in vitro chamber method it was found that the onset of secretion (histamine stimulation) resulted in a sustained decrease in transmucosal resistance and a small initial increase in potential difference (PD) followed by a larger decrease. The ratio PD/resistance (the predicted short-circuit current, Isc) initially increased and then decreased. During short-circuiting, the onset of secretion resulted in the predicted changes in Isc. Following the establishment of secretion, changes in the H+ ion secretory rate frequently occurred without significant changes in Isc. Thiocyanate inhibition resulted in a transient increase in Isc and a sustained increase in both the PD and resistance. Clamping of the voltage across the mucosa at negative levels (nutrient negative) reversibly decreased the H+ ion rate. The average voltage necessary to reduce the H+ ion rate to zero was –140 mv. With a single loop equivalent circuit the average EMF of the H+ ion mechanism on the basis of the voltage-clamping experiments is 140 mv. Findings are explained by the separate site theory with the assumption of cytoplasmic biochemical coupling.


1962 ◽  
Vol 203 (6) ◽  
pp. 1091-1093 ◽  
Author(s):  
Warren S. Rehm

The present report is concerned with in vitro studies on gastric mucosa of the skate, Raja eglentaria, the electric ray, Narcine braziliensis, and the shark, Negaprion brevirostris. Maximum secretory rates of from 0.65 to 2.7 µEq hr–1 cm–2 were found. An increase in the secretory rate from an initial low level was associated with an increase in potential difference (PD), a decrease in resistance, and an increase in the calculated short-circuit current. The average PD and resistance before the increase in the secretory rate was 2.2 mv (nutrient positive) and 268 ohms cm2. After the increase they were 6.4 mv and 199 ohms cm2. Thiocyanate (10–2 m) to nutrient resulted in a decrease of secretory rate to zero and an increase in PD and resistance. The results can be explained on the basis of the separate mechanisms theory of H+ and Cl– ion secretion on the assumption that the resistance in the Cl– ion limb of the circuit is considerably lower than that in the H+ ion limb of the circuit.


1984 ◽  
Vol 247 (3) ◽  
pp. C260-C267 ◽  
Author(s):  
E. Grasset ◽  
M. Pinto ◽  
E. Dussaulx ◽  
A. Zweibaum ◽  
J. F. Desjeux

Human colonic carcinoma Caco-2 cells grown in vitro undergo epithelial differentiation. Electrical measurements showed that they form resistant monolayers of polarized cells. On millipore filters, transepithelial electrical resistance (154 +/- 6.5 omega X cm2) was accompanied by a small potential difference (0.29 +/- 0.02 mV, serosal side positive) and by short-circuit current (1.9 +/- 0.14 microA X cm-2), both of which were ouabain sensitive. Micropuncture of domes formed on plastic supports under standard culture conditions revealed electrical polarity similar to that of filter-grown cells (0.8 +/- 0.2 mV, serosal side positive) combined with a highly negative cytoplasm (-57 +/- 1 mV) and very marked cell asymmetry (76% of total electrical cell resistance was located in the mucosal membrane). These parameters were not affected by the diuretic amiloride nor the hormone aldosterone, suggesting that sodium conductance is very limited in the mucosal membrane. Addition to the mucosal side of the ionophore nystatin or amphotericin B unmasked the possibility of high electrical transport activity. Electrical measurements made it possible to define the epithelial properties of Caco-2 cells, which may resemble those of colonic crypt or fetal cells. These measurements also confirmed that functional differentiation is homogeneous in Caco-2 cells. It is suggested that dome cell micropuncture may be useful in investigating the functional properties of other dome-forming cell lines.


1975 ◽  
Vol 67 (1) ◽  
pp. 119-125
Author(s):  
P. J. BENTLEY

SUMMARY The electrical potential difference and short-circuit current (scc, reflecting active transmural sodium transport) across the toad urinary bladder in vitro was unaffected by the presence of hypo-osmotic solutions bathing the mucosal (urinary) surface, providing that the transmural flow of water was small. Vasopressin increased the scc across the toad bladder (the natriferic response), but this stimulation was considerably reduced in the presence of a hypo-osmotic solution on the mucosal side, conditions under which water transfer across the membrane was also increased. This inhibition of the natriferic response did not depend on the direction of the water movement, for if the osmotic gradient was the opposite way to that which normally occurs, the response to vasopressin was still reduced. The natriferic response to cyclic AMP was also inhibited in the presence of an osmotic gradient. Aldosterone increased the scc and Na+ transport across the toad bladder but this response was not changed when an osmotic gradient was present. The physiological implications of these observations and the possible mechanisms involved are discussed.


2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


1982 ◽  
Vol 98 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M. W. Smith ◽  
P. S. James

SUMMARYProximal colons taken from lambs up to 3 weeks after birth were shown to transport both sodium and chloride from lumen to blood when incubated in vitro.Sodium transport fell into three phases during postnatal development. The first covered the period from birth to 3 days of age when sodium transport was high and equal to that calculated from measurement of short-circuit current. The second was seen in 5- and 7-day-old lambs where the short-circuit current was low and the net transport of sodium was negligible. The third was seen in 2-3-week-old lambs where sodium transport was high, but the short-circuit current was low.Chloride absorption by colons taken from 1-day-old lambs appeared to be in exchange for an anion, possibly bicarbonate. Chloride absorption by colons taken from 3-week-old lambs appeared to be electrogenie or coupled directly to the transport of sodium.A possible explanation for the failure of electrolyte absorption by colons taken from 5- and 7-day-old lambs is discussed.


1985 ◽  
Vol 74 (1) ◽  
pp. 137-152
Author(s):  
B.L. Gupta ◽  
J.A. Dow ◽  
T.A. Hall ◽  
W.R. Harvey

An alkaline hydrolysate of Bacillus thuringiensis var kurstaki HD1 (Btk) parasporal crystals was administered at 25 micrograms ml-1 (f.c.) to isolated, short-circuited, midguts of tobacco hornworm (Manduca sexta) larvae. The short-circuit current (s.c.c.), a precise measure of K+ active transport, was inhibited by 78% in 10 min in Btk-treated midguts as compared to controls. The elemental concentrations of K, together with Na, Mg, P, S, Cl and Ca, as well as the water content, were determined by electron probe X-ray microanalysis (EPXMA) in the muscle cells, columnar cells and goblet cells, as well as in the extracellular goblet cavity and the bathing media. The average K concentration in the goblet cell cavity was 129 mmol/kg wet wt in control midguts but only 37 mmol/kg wet wt in Btk-treated midguts. The elemental concentrations, including that of K, in other cell compartments were much less affected by Btk, but a rise in total cell calcium is suggested. It has been previously suggested that in vitro Btk acts specifically on limited regions of the apical membrane of the midgut epithelial cells. The simplest interpretation of the EPXMA results would be that initially Btk interacts specifically with the goblet cell apical membrane, which bounds the goblet cavity and contains the K+ pump responsible for the s.c.c. and high transepithelial potential difference (p.d.). Such interaction results in a rapid disruption of K+ transport across the goblet cell apical membrane, leading to dissipation of the K+ gradient and loss of p.d. The histopathological changes previously reported by other workers would then be a consequence of K+ pump inhibition causing changes in the intracellular pH, Ca2+ etc. Some possible molecular bases for these specific interactions between Btk and cell membrane are discussed.


Sign in / Sign up

Export Citation Format

Share Document