Effect of adrenergic agonists on big and small renin

1980 ◽  
Vol 238 (5) ◽  
pp. E416-E420
Author(s):  
H. Iwao ◽  
C. S. Lin ◽  
A. M. Michelakis

The effect of alpha- and beta-adrenergic agonists on renal and submaxillary renin of different molecular weights was studied using male albino mice as experimental animals. Phenylephrine or isoproterenol was administered intravenously after removal of the submaxillary glands and/or kidneys. Renin was isolated from plasma by column chromatography and then measured by a direct radioimmunoassay. Phenylephrine increased both 68,500-dalton renin (big renin) and 38,000-dalton renin (small renin) in the plasma of nephrectomized mice. Isoproterenol increased big and small renin in the plasma of mice whose submaxillary glands were removed. In both cases, the increase of small renin was significantly greater than that of big renin. The results suggest that the alpha-adrenergic agonist phenylephrine affects the submaxillary gland, leading to the increase of both big and small plasma renin. In contrast, the beta-adrenergic agonist isoproterenol affects the kidney, leading to the increase of both big and small plasma renin.

Parasitology ◽  
1990 ◽  
Vol 100 (3) ◽  
pp. 429-434 ◽  
Author(s):  
A. Ayala ◽  
F. Kierszenbaum

SUMMARYWe previously reported that blood forms of Trypanosoma cruzi express alpha- and beta-adrenergic receptors and that binding of specific agonists to these receptors modifies the infective capacity of the parasite in vitro. The present study has revealed that the inhibitory effect of the beta-adrenergic agonist L-isoproterenol and the stimulatory effect of the alpha-adrenergic agonist L-phenylephrine are not produced when the parasite is subjected to prolonged exposure to otherwise effective doses of these agonists or when supraoptimal doses of these agonists are used. We refer to these phenomena as ‘desensitization’ because of their analogy with vertebrate cells becoming desensitized by prolonged exposure to, or relatively high concentrations of, adrenergic agonists. At a constant agonist concentration, T. cruzi desensitization was time-dependent and, when the time of parasite treatment with the agonists was not changed, the higher concentrations of the agonist tested were the most effective in producing desensitization. The reduced infectivity resulting from treatment with optimal doses of L-isoproterenol was accompanied by elevated levels of cyclic adenosine mono- phosphate (cAMP) which were not detectable when L-isoproterenol concentrations producing desensitization were used. This finding implicated cAMP as a likely second signal in the inhibitory mechanisms of this agonist. No significant change in cAMP was detectable in parasites treated with L-phenylephrine, leaving open the question about how optimal doses of this alpha-adrenergic agonist enhance T. cruzi infectivity. Parasite responsiveness to alpha- and beta-adrenergic agonists as well as the desensitization effects define a system which regulates infectivity and could be modified at the host tissue level by naturally occurring agonists.


1992 ◽  
Vol 72 (1) ◽  
pp. 15-21 ◽  
Author(s):  
A. L. Schaefer ◽  
S. D. M. Jones ◽  
A. K. W. Tong ◽  
A. M. B. dePassille ◽  
J. Rushen ◽  
...  

A total of 86 ad libitum fed Lacombe bred barrows and gilts weighing on average 90 kg were used to determine the effect of feeding ractopamine on animal behaviour. Four treatment groups consisted of a control (N = 22) and three levels of ractopamine (10 ppm (N = 15), 15 ppm (N = 24) and 20 ppm (N = 25) in the diet). The pigs received the ractopamine treatments for 5–6 wk prior to behavioural observations. There was little effect of ractopamine on behaviour. The ractopamine-fed pigs were observed to lie down in a group more frequently (P = 0.06) and to walk around their pen less frequently (P = 0.01). No abnormal, stereotyped, agonistic or aggressive behaviour was induced by the ractopamine. The data from the present study suggest that ractopamine, added to the diet of market-weight pigs at levels reported, does not cause marked changes in behaviour. Key words: Pig behaviour, beta-adrenergic agonists, ractopamine


1995 ◽  
Vol 268 (6) ◽  
pp. L983-L990 ◽  
Author(s):  
S. Suzuki ◽  
D. Zuege ◽  
Y. Berthiaume

Although beta-adrenergic agonists are known to stimulate sodium transport in alveolar epithelial cells, the exact cellular mechanism involved in this process is unknown. We determined whether terbutaline, a beta-adrenergic agonist, modulated Na(+)-K(+)-ATPase in cultured rat alveolar type II cells by measuring the enzyme's activity via an adapted radiometric method. The assay conditions were optimized by evaluating permeabilization techniques and substrate concentrations for Na(+)-K(+)-ATPase measurement at maximum velocity enzyme reaction (Vmax). Terbutaline at 10(-2) M increased enzyme activity, with a maximal response at 15 min that was completely inhibited by 10(-2) M propranolol. This effect of terbutaline was dependent on the presence of serum as well as on the time the cells were in culture. The enhancement of Na(+)-K(+)-ATPase activity was reproduced by 10(-3) M dibutyryl adenosine 3',5'-cyclic monophosphate and 5 x 10(-5) M forskolin. Neither 10(-4) M amiloride nor a sodium-free solution influenced the effect of terbutaline. Western blotting showed that terbutaline did not change the expression of the alpha 1-subunit of the enzyme, which is the predominant form in this cell type. We conclude that beta-adrenergic agonists can modulate Na(+)-K(+)-ATPase activity partially through adenosine 3',5'-cyclic monophosphate and this process is not secondary to an increase in intracellular sodium concentration.w


1976 ◽  
Vol 231 (2) ◽  
pp. 551-554 ◽  
Author(s):  
AM Michelakis ◽  
JW Menzie ◽  
H Yoshida

We previously reported that alpha- but not beta-adrenergic agonists stimulate renin release from mouse submaxillary glands in vivo. The present studies were undertaken to determine if these in vivo effects were due to a direct action on the submaxillary glands and to find out if cyclic AMP (cAMP) might be involved in submaxillary renin release. Pooled mouse submaxillary gland slices were incubated in Krebs-Ringer bicarbonate medium following a preincubation period, and renin release was measured by a radioimmunoassay for the direct measurement of submaxillary gland renin. Tissue cAMP levels were also measured. Addition of the alpha-adrenergic agonists, phenylephrine or norepinephrine, significantly increased renin release (P less than 0.01 vs. control) while decreasing tissue cAMP levels (P less than 0.01 vs. control). In contrast, addition of the beta-adrenergic agonist isoproterenol markedly increased cAMP levels (P less than 0.01 vs. control) and decreased renin release (P less than 0.05 vs. control). Pretreatment of the slices with the alpha-blocker phenoxy genzamine inhibited the effect of phenylephrine. These results indicate that alpha-adrenergic agonists cause renin release from submaxillary glands which is accompanied by a fall in tissue cAMP levels. This is in contrast to renin release from the kidney which is stimulated by beta-adrenergic agonists.


1991 ◽  
Vol 261 (5) ◽  
pp. H1499-H1507 ◽  
Author(s):  
P. I. Chang ◽  
D. L. Rutlen

The effect of beta-adrenergic agonists on splanchnic intravascular volume (SIV), measured with radionuclide imaging, and the subsequent influence of such volume changes on cardiac output (CO) were examined in 40 anesthetized dogs. Isoproterenol (6 micrograms/min) caused a decrease in total SIV of 12 +/- 1% (P less than 0.001). The decrease was due entirely to a decrease in splenic volume of 24 +/- 3% (P less than 0.001), since volume increased in the remainder of the splanchnic vasculature [hepatic and mesenteric volume increased 12 +/- 2% (P less than 0.001) and 11 +/- 3% (P less than 0.02), respectively]. CO increased from 1,724 +/- 187 to 3,138 +/- 321 ml/min (P less than 0.001); after subsequent splenectomy, isoproterenol caused a similar increment. Isoproterenol-associated SIV changes were not altered by carotid denervation and vagotomy or by beta 1-adrenergic inhibition with metoprolol but were abolished by nonselective beta-adrenergic inhibition with propranolol. With a larger dose of metoprolol and smaller dose of isoproterenol to minimize beta 1-adrenergic effects, the isoproterenol-associated CO increment was attenuated (P less than 0.01) by splenectomy. With the beta 2-agonist terbutaline (41 micrograms/min) after metoprolol, total SIV decreased 15 +/- 4% (P less than 0.001). After subsequent alpha-adrenergic inhibition with phenoxybenzamine, terbutaline caused no change in SIV and an attenuated (P less than 0.05) increase in CO. Thus beta-adrenergic agonist administration causes a decrease in total SIV due entirely to a decrease in splenic volume. The SIV decrement is dependent on beta 2- and alpha-adrenoceptor stimulation and appears to enhance CO only if beta 1-adrenergic effects are minimized.


1982 ◽  
Vol 206 (3) ◽  
pp. 611-618 ◽  
Author(s):  
R J Davis ◽  
B R Martin

1. The accumulation of [3H]methyltriphenylphosphonium by isolated fat-cells was used to estimate the membrane potential of mitochondria in situ. 2. Adrenaline caused a large decrease in the accumulation of [3H]methyltriphenylphosphonium. Mitochondria in fat-cells incubated in the presence of adrenaline had a very low calculated membrane potential. This effect was also given by isoprenaline (a beta-adrenergic agonist) and was blocked by propranolol (a beta-adrenergic antagonist). 3. The effect of isoprenaline could be partially antagonized by the use of media with high albumin concentrations. Addition of sodium oleate to saturate the fatty acid-binding sites on the albumin reversed this antagonism. 4. It is proposed that the decrease in the calculated mitochondrial membrane potential is due to the uncoupling effect of the non-esterified fatty acids released by the stimulation of lipolysis observed in the presence of beta-adrenergic agonists.


1983 ◽  
Vol 210 (2) ◽  
pp. 463-472 ◽  
Author(s):  
T P Goldstone ◽  
R J Duddridge ◽  
M Crompton

The Na+-induced efflux of Ca2+ from liver mitochondria was activated by tissue pretreatment with 1 microM-adrenaline, 1 microM-isoprenaline, 10 nM-glucagon and 100 microM-cyclic AMP when 10 mM-lactate plus 1 mM-pyruvate were present in the perfusion medium. Infusion of the alpha 1-adrenergic agonist, phenylephrine (10 microM), was ineffective. The activation induced by the beta-adrenergic agonist, isoprenaline, was maximal after infusion of agonist for 2 min. The isoprenaline-induced activation was very marked (120-220%), with about 7 nmol of intramitochondrial Ca2+/mg of protein, but was not evident with greater than 15 nmol of Ca2+/mg. Ca2+ efflux in the absence of Na+ and in the presence of the Ca2+ ionophore A23187 was not affected by isoprenaline pretreatment over the range 6-23 nmol of internal Ca2+/mg. With 10 mM-lactate plus 1 mM-pyruvate in the perfusion medium, glucagon and isoprenaline infusion increased tissue cyclic AMP content about 8-fold and 3-fold respectively. With 10 mM-pyruvate alone, neither glucagon nor isoprenaline caused a significant increase in cyclic AMP. Omission of lactate also abolished the ability of glucagon, but not of isoprenaline, to activate the Na+-induced efflux of Ca2+. The data indicate that cyclic AMP may mediate the activation caused by glucagon, but provide no evidence that cyclic AMP is an obligatory link in the beta-adrenergic-induced activation.


1983 ◽  
Vol 55 (5) ◽  
pp. 1609-1613 ◽  
Author(s):  
G. A. Rinard ◽  
A. Jensen ◽  
A. M. Puckett

Isoproterenol concentration-response curves for cAMP formation and relaxation were determined in control and hydrocortisone-treated strips of canine tracheal smooth muscle. Adenosine 3′5′-cyclic monophosphate(cAMP) formation and muscle relaxation were well correlated, and both responses were enhanced proportionally by hydrocortisone treatment. Guanosine 3′5′-cyclic monophosphate was unchanged by isoproterenol but was increased to a small but significant extent by hydrocortisone. Prostaglandin E2 (not a beta-adrenergic agonist) relaxed the muscle strips, but this effect was not enhanced by hydrocortisone pretreatment. Our data are compatible with the concept that cAMP is an obligatory intermediate in the chain of events by which beta-adrenergic agonists relax airway smooth muscle. The action of hydrocortisone on this process is localized at or before cAMP formation, since it enhanced both cAMP formation and relaxation to the same extent.


2001 ◽  
Vol 168 (1) ◽  
pp. 177-183 ◽  
Author(s):  
S Brechet ◽  
P Plaisancie ◽  
V Dumoulin ◽  
JA Chayvialle ◽  
JC Cuber ◽  
...  

The secretion of PYY by endocrine L cells of the terminal gut is under the control of nutrients, the autonomic nervous system and hormones. Catecholamines, and the non-specific beta-adrenergic agonist isoproterenol induce PYY secretion from rat isolated colon or ileum. Because beta3-adrenergic receptors now appear to mediate many of the effects of catecholamines in the gastrointestinal tract, we investigated the involvement of beta1-, beta2-, and beta3-adrenoceptor stimulation in PYY secretion from the isolated, vascularly perfused rat colon. Infusion of 10(-6) M isoproterenol induced a transient increase in PYY secretion (from 36+/-4 to 87+/-20 fmol/2 min; n=7, P<0.05), that was abolished by a previous infusion of the beta1- and beta2-adrenergic blocker (and partial beta3-agonist) alprenolol (10(-6) M). The beta1-adrenergic agonist dobutamine and the beta-2 agonist terbutaline also (both at 10(-5) M) significantly stimulated PYY secretion, from 29+/-1 to 79+/-12 fmol/2 min and from 19+/-1 to 73+/-13 fmol/2 min respectively (n=7, P<0.05). Neither of the beta3-adrenergic agonists tested (BRL 37 344 (10(-5), 10(-6) M) and SR 58 611A (10(-6) M)) significantly stimulated PYY secretion, thus confirming the exclusive involvement of beta1- and beta2-receptors in beta-adrenergic agonist induced hormone secretion.


1988 ◽  
Vol 255 (6) ◽  
pp. H1429-H1433 ◽  
Author(s):  
R. J. Schiebinger

We have previously reported that methacholine inhibits norepinephrine-stimulated immunoreactive atrial natriuretic peptide (ANP-IR) secretion by 65% in vitro. In the present study, we examined the mechanism by which methacholine inhibits norepinephrine-stimulated secretion using isolated, paced rat left atria superfused in vitro. Norepinephrine has beta- and alpha-adrenergic properties, both of which stimulate ANP secretion. Thus we separately examined the effect of 10 microM methacholine on ANP-IR secretion stimulated by the beta-adrenergic agonist isoproterenol (0.1 microM) and by the alpha-adrenergic agonist phenylephrine (10 microM). Methacholine lowered isoproterenol-stimulated ANP-IR secretion to base line but did not inhibit phenylephrine-stimulated ANP-IR secretion. Atria were superfused with 0.5 mM dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) to determine whether inhibition of isoproterenol-stimulated secretion by methacholine occurred by a reduction in adenylate cyclase activity or at a point distal to cAMP. Methacholine inhibited dibutyryl cAMP-stimulated ANP-IR secretion by 50%. This inhibition could not be reversed by 20 microM isobutylmethylxanthine. We conclude that 1) methacholine completely blocks isoproterenol-stimulated ANP-IR secretion; 2) inhibition appears to be primarily due to a decrease in adenylate cyclase activity; however, inhibition occurs at a point(s) distal to cAMP production; 3) methacholine does not inhibit phenylephrine-stimulated ANP-IR secretion; and 4) inhibition by methacholine of norepinephrine-stimulated ANP-IR secretion reflects a block in beta-adrenergic activity.


Sign in / Sign up

Export Citation Format

Share Document