Biological activity of 24,24-difluoro-1,25-dihydroxyvitamin D3

1983 ◽  
Vol 244 (2) ◽  
pp. E159-E163
Author(s):  
S. Okamoto ◽  
Y. Tanaka ◽  
H. F. DeLuca ◽  
Y. Kobayashi ◽  
N. Ikekawa

The biological activity of 24,24-difluoro-1,25-dihydroxyvitamin D3 was compared with 1,25-dihydroxyvitamin D3 in the rat. The 24,24-difluoro-1,25-dihydroxyvitamin D3 has a potency of approximately 5-10 times that of 1,25-dihydroxyvitamin D3 in the known in vivo vitamin D responsive systems. These systems include intestinal calcium transport, bone calcium mobilization, calcification of epiphyseal plate cartilage, and elevation of plasma calcium and phosphorus concentrations. Thus, 24,24-difluoro-1,25-dihydroxyvitamin D3 is the first known analogue with higher potency than 1,25-dihydroxyvitamin D3 in vivo.

1988 ◽  
Vol 254 (4) ◽  
pp. E402-E406
Author(s):  
H. F. DeLuca ◽  
R. R. Sicinski ◽  
Y. Tanaka ◽  
P. H. Stern ◽  
C. M. Smith

The biological activity of 1,25-dihydroxyvitamin D2 [1,25(OH)2D2] and 24-epi-1,25-dihydroxyvitamin D2 [24-epi-1,25(OH)2D2] has been determined in vitamin D-deficient rats. The biological effectiveness of 1,25(OH)2D2 is equal to that reported previously for 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] (15) in intestinal calcium transport, mineralization of bone, mobilization of bone calcium, and elevation of plasma inorganic phosphorus of rachitic rats. However, 24-epi-1,25(OH)2D2 is at best one-half as active as 1,25(OH)2D2 in stimulating intestinal calcium transport and in the mineralization of rachitic bone. The 24-epi-1,25(OH)2D2 is one-third as active as 1,25(OH)2D3 in binding to the chick intestinal receptor for 1,25(OH)2D3. Thus receptor discrimination may account for the twofold difference in intestinal calcium transport activity. 24-Epi-1,25(OH)2D2 appeared inactive in in vivo mobilization of bone calcium or bone phosphorus. On the other hand, in fetal rat bone in culture, the epi compound was only five times less active than 1,25(OH)2D2 in inducing resorption. Short-term experiments on bone mineral mobilization in vivo show that the 24-epi-1,25(OH)2D2 does induce bone calcium mobilization but that its activity in this respect is short lived. It is suggested that 24-epi-1,25(OH)2D2 and, as a result, it shows preferential activity on intestine whose response to a single dose of 1,25(OH)2D2 remains for several days, whereas the short-lived bone system does not remain stimulated during the 24-h period between doses.


1977 ◽  
Vol 233 (3) ◽  
pp. E160 ◽  
Author(s):  
R Rizzoli ◽  
H Fleisch ◽  
J P Bonjour

Thyroparathyroidectomy (TPTX) decreases plasma calcium, bone formation and resorption, and tubular reabsorption of calcium. It also reduces the production of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] which very likely results in the decrease in the intestinal calcium absorption (Vna) observed after TPTX. We have examined whether the influence of TPTX on plasma calcium and bone calcium fluxes could be corrected by doses of 1,25-(OH)2D3 (2 X 13 pmol/day ip), which just normalize Vna. The study was made by calcium balance and 45Ca kinetics in rats receiving a normal supply of vitamin D3. The results show that in TPTX rats physiological doses of 1,25-(OH)2D3 increased plasma calcium and decreased plasma phosphate. Calcium retention was not fully corrected because 1,25-(OH)2D3 increased urinary calcium excretion. The deposition into and the release of calcium from bone were enhanced by 1,25-(OH)2D3 but remained lower than in pair-fed sham-operated animals. Thus, in as much as the diminished renal production of 1,25-(OH)2D3 in TPTX is entirely responsible for the reduced Vna, the decrease in 1,25-(OH)2D3 could only partly explain the effect of thyroparathyroidectomy on bone calcium fluxes.


2020 ◽  
Vol 21 (2) ◽  
pp. 470 ◽  
Author(s):  
Bashar Al-Zohily ◽  
Asma Al-Menhali ◽  
Salah Gariballa ◽  
Afrozul Haq ◽  
Iltaf Shah

In this review, we discuss the sources, formation, metabolism, function, biological activity, and potency of C3-epimers (epimers of vitamin D). We also determine the role of epimerase in vitamin D-binding protein (DBP) and vitamin D receptors (VDR) according to different subcellular localizations. The importance of C3 epimerization and the metabolic pathway of vitamin D at the hydroxyl group have recently been recognized. Here, the hydroxyl group at the C3 position is orientated differently from the alpha to beta orientation in space. However, the details of this epimerization pathway are not yet clearly understood. Even the gene encoding for the enzyme involved in epimerization has not yet been identified. Many published research articles have illustrated the biological activity of C3 epimeric metabolites using an in vitro model, but the studies on in vivo models are substantially inadequate. The metabolic stability of 3-epi-1α,25(OH)2D3 has been demonstrated to be higher than its primary metabolites. 3-epi-1 alpha, 25 dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3) is thought to have fewer calcemic effects than non-epimeric forms of vitamin D. Some researchers have observed a larger proportion of total vitamin D as C3-epimers in infants than in adults. Insufficient levels of vitamin D were found in mothers and their newborns when the epimers were not included in the measurement of vitamin D. Oral supplementation of vitamin D has also been found to potentially cause increased production of epimers in mice but not humans. Moreover, routine vitamin D blood tests for healthy adults will not be significantly affected by epimeric interference using LC–MS/MS assays. Recent genetic models also show that the genetic determinants and the potential factors of C3-epimers differ from those of non-C3-epimers.Most commercial immunoassays techniques can lead to inaccurate vitamin D results due to epimeric interference, especially in infants and pregnant women. It is also known that the LC–MS/MS technique can chromatographically separate epimeric and isobaric interference and detect vitamin D metabolites sensitively and accurately. Unfortunately, many labs around the world do not take into account the interference caused by epimers. In this review, various methods and techniques for the analysis of C3-epimers are also discussed. The authors believe that C3-epimers may have an important role to play in clinical research, and further research is warranted.


Sign in / Sign up

Export Citation Format

Share Document