Effects of in vivo gonadal hormone environment on in vitro hGRF-40-stimulated GH release

1985 ◽  
Vol 249 (3) ◽  
pp. E276-E280 ◽  
Author(s):  
W. S. Evans ◽  
R. J. Krieg ◽  
E. R. Limber ◽  
D. L. Kaiser ◽  
M. O. Thorner

The effects of gender and the gonadal hormone environment on basal and stimulated growth hormone (GH) release by dispersed and continuously perifused rat anterior pituitary cells were examined. Cells from intact male and diestrus day 2 female rats and from castrate male rats either untreated or treated with testosterone (T) or 17 beta-estradiol (E2) were used. Basal GH release (ng/min per 10(7) cells; mean +/- SE) by cells from diestrus day 2 female rats was less than by cells from castrate rats treated with T (4.3 +/- 0.6 vs. 11.4 +/- 2.7, respectively; P less than 0.025). No other differences in basal release were detected. Concentration-response relationships were documented between human GH-releasing factor 40 (hGRF-40; 0.03-100 nM given as 2.5-min pulses every 27.5 min) and GH release. Mean (+/- SE) overall GH release (ng/min per 10(7) cells) above base line was greater by cells from intact male rats (496 +/- 92) than by cells from castrate (203 +/- 37.3; P less than 0.0001), castrate and T-treated (348 +/- 52.8; P = 0.008), or castrate and E2-treated (58.1 +/- 6.8; P less than 0.001) male rats or by diestrus day 2 rats (68.6 +/- 9.5; P = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)

1963 ◽  
Vol 43 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Julian I. Kitay

ABSTRACT Administration of a depot testosterone preparation to male and female rats resulted in no change in body or pituitary weight in either sex. Pituitary corticotrophin content was unaltered in male animals but was reduced in females. Adrenal weights and adrenal RNA and DNA contents were decreased in both sexes. Plasma corticosterone concentrations were unaffected in males but were reduced in female rats after stress or corticotrophin injection. Hepatic reduction of ring A in vitro and biological half-life of corticosterone in vivo were unchanged in male animals but impaired in females. Testosterone administration to intact male rats significantly increased adrenal steroidogenesis measured in vitro. A significant decrease in steroid production was found in intact females but increased steroidogenesis was observed in adrenals from testosterone-treated oophorectomized animals. No effect was obtained following addition of testosterone directly in vitro. The data suggest that testosterone leads both to diminution of corticotrophin secretion and enhancement of adrenal steroid secretory capacity. In intact female rats, these effects are complicated by suppression of oestrogen secretion, the effects of which have been reported previously.


1991 ◽  
Vol 261 (2) ◽  
pp. E227-E232 ◽  
Author(s):  
J. P. Schroder-van der Elst ◽  
D. van der Heide ◽  
J. Kohrle

In vitro, the synthetic flavonoid EMD 21388 appears to be a potent inhibitor of thyroxine (T4) 5'-deiodinase and diminishes binding of T4 to transthyretin. In this study, in vivo effects of long-term administration of EMD 21388 on thyroid hormone production and metabolism were investigated. Intact male rats received EMD 21388 (20 mumol.kg body wt-1.rat-1.day-1) for 14 days. [125I]T4 and 3,5,3'-[131I]triiodotyronine (T3) were infused continuously and intravenously in a double-isotope protocol for the last 10 and 7 days, respectively. EMD 21388 decreased plasma thyroid hormone concentrations, but thyrotropin levels in plasma and pituitary did not change. Plasma clearance rates for T4 and T3 increased. Thyroidal T4 secretion was diminished, but T3 secretion was elevated. Extrathyroidal T3 production by 5'-deiodination was lower. T4 concentrations were markedly lower in all tissues investigated. Total tissue T3 was lower in brown adipose tissue, brain, cerebellum, and pituitary, tissues that express the type II 5'-deiodinase isozyme due to decreased local T3 production. Most tissues showed increased tissue/plasma ratios for T4 and T3. These results indicate that this flavonoid diminished T4 and increased T3 secretion by the thyroid, probably in analogy with other natural flavonoids, by interference with one or several steps between iodide uptake, organification, and hormone synthesis.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1648-1653 ◽  
Author(s):  
Philippe Zizzari ◽  
Romaine Longchamps ◽  
Jacques Epelbaum ◽  
Marie Thérèse Bluet-Pajot

Administration of ghrelin, an endogenous ligand for the GH secretagogue receptor 1a (GHSR 1a), induces potent stimulating effects on GH secretion and food intake. However, more than 7 yr after its discovery, the role of endogenous ghrelin remains elusive. Recently, a second peptide, obestatin, also generated from proteolytic cleavage of preproghrelin has been identified. This peptide inhibits food intake and gastrointestinal motility but does not modify in vitro GH release from pituitary cells. In this study, we have reinvestigated obestatin functions by measuring plasma ghrelin and obestatin levels in a period of spontaneous feeding in ad libitum-fed and 24-h fasted mice. Whereas fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced. Exogenous obestatin per se did not modify food intake in fasted and fed mice. However, it inhibited ghrelin orexigenic effect that were evident in fed mice only. The effects of obestatin on GH secretion were monitored in superfused pituitary explants and in freely moving rats. Obestatin was only effective in vivo to inhibit ghrelin stimulation of GH levels. Finally, the relationship between octanoylated ghrelin, obestatin, and GH secretions was evaluated by iterative blood sampling every 20 min during 6 h in freely moving adult male rats. The half-life of exogenous obestatin (10 μg iv) in plasma was about 22 min. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than octanoylated ghrelin and GH. Ghrelin and obestatin levels were not strictly correlated. In conclusion, these results show that obestatin, like ghrelin, is secreted in a pulsatile manner and that in some conditions; obestatin can modulate exogenous ghrelin action. It remains to be determined whether obestatin modulates endogenous ghrelin actions.


2014 ◽  
Vol 307 (4) ◽  
pp. H504-H514 ◽  
Author(s):  
K. Tarhouni ◽  
M. L. Freidja ◽  
A. L. Guihot ◽  
E. Vessieres ◽  
L. Grimaud ◽  
...  

In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodeling. This flow-mediated remodeling (FMR) is absent in male rats aged 10 mo and more. As FMR depends on estrogens in 3-mo-old female rats, we hypothesized that it might be preserved in 12-mo-old female rats. Blood flow was increased in vivo in mesenteric resistance arteries after ligation of the side arteries in 3- and 12-mo-old male and female rats. After 2 wk, high-flow (HF) and normal-flow (NF) arteries were isolated for in vitro analysis. Arterial diameter and cross-sectional area increased in HF arteries compared with NF arteries in 3-mo-old male and female rats. In 12-mo-old rats, diameter increased only in female rats. Endothelial nitric oxide synthase expression and endothelium-mediated relaxation were higher in HF arteries than in NF arteries in all groups. ERK1/2 phosphorylation, NADPH oxidase subunit expression levels, and arterial contractility to KCl and to phenylephrine were greater in HF vessels than in NF vessels in 12-mo-old male rats only. Ovariectomy in 12-mo-old female rats induced a similar pattern with an increased contractility without diameter increase in HF arteries. Treatment of 12-mo-old male rats and ovariectomized female rats with hydralazine, the antioxidant tempol, or the angiotensin II type 1 receptor blocker candesartan restored HF remodeling and normalized arterial contractility in HF vessels. Thus, we found that FMR of resistance arteries remains efficient in 12-mo-old female rats compared with age-matched male rats. A balance between estrogens and vascular contractility might preserve FMR in mature female rats.


1987 ◽  
Vol 116 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Koji Nakagawa ◽  
Tatsuya Ishizuka ◽  
Takao Obara ◽  
Miyao Matsubara ◽  
Kazumasa Akikawa

Abstract. The mechanism of apparently discrepant actions of glucocorticoids (GC) on GH secretion, in vivo suppression and in vitro potentiation, was studied in rats. Dexamethasone (Dex), at the concentration of 50 nmol/l, Potentiated basal and GHRH-stimulated GH release from monolayer culture of normal rat pituitary cells in 48 h. On the other hand, in vivo administration of Dex, 165 μg daily for 3 days, consistently suppressed serum GH levels in female rats. In these rats, the hypothalamic content of immunoreactive (IR) SRIH was significantly increased, whereas that of IR-GHRH was significantly decreased in comparison with the untreated rats. Bioassayable GH-releasing activity was also lower in Dex-treated rats. These findings indicate that the suppressing effect of GC on GH release in vivo is, at least partially, due to the increase in hypothalamic SRIH release and probably also to the decrease in GHRH release, and these effects surpass the potentiating effect of GC on GH release at the pituitary level, resulting in a net inhibitory effect in vivo.


1992 ◽  
Vol 132 (2) ◽  
pp. 277-283 ◽  
Author(s):  
G. Robinson ◽  
J. J. Evans ◽  
K. J. Catt

ABSTRACT Gonadotrophin-releasing activity of oxytocin has previously been demonstrated in vitro and in vivo. This study investigated whether oxytocin is also able to induce LH accumulation in pituitary cells. Following trypsin digestion and mechanical dispersion, pituitary cells from female rats were incubated with oxytocin (100 nmol/l) for 24 h. LH release stimulated by oxytocin increased (P < 0·001) progressively during the incubation indicating a different secretory pattern from the more rapid but less sustained secretion stimulated by gonadotrophin-releasing hormone. Oxytocin also enhanced (P < 0·01) total LH accumulation in the incubation system (released plus cell contents) which was apparent after 7–11 h of stimulation. The release of LH stimulated by oxytocin was reduced by the protein synthesis inhibitor cycloheximide (10 μmol/l). However, cycloheximide did not completely block oxytocin-stimulated LH release; there remained some LH release above that seen in non-stimulated controls (P < 0·01) revealing the presence of a cycloheximide-resistant component in the release mechanism. Furthermore, accumulation of total LH in 24 h incubations was suppressed (P < 0·01) by cycloheximide. The advancement in LH release which oxytocin has been shown to induce in vivo in pro-oestrous rats was accompanied by an early reduction of pituitary LH stores. However, the fall normally observed in LH content during the surge was markedly attenuated by the oxytocin treatment. Thus, loss of pituitary LH stores was less in oxytocin-treated rats than in saline-treated controls, even though net LH release into plasma was increased. Therefore, oxytocin stimulated the replenishment of LH stores. Although the mechanism(s) remains to be defined and the relationships between in-vitro and in-vivo results are as yet uncharacterized, the present study demonstrates that oxytocin treatment stimulates LH production in both dispersed cells and intact pituitaries in situ. Journal of Endocrinology (1992) 132, 277–283


1961 ◽  
Vol 36 (4) ◽  
pp. 485-497 ◽  
Author(s):  
G. P. van Rees

ABSTRACT The hypothesis that steroid sex hormones influence pituitary F. S. H. by independent actions on its production and capacity of the gland to release it has been investigated by means of incubation experiments. During incubation, rat pituitary glands released considerable amounts of F. S. H. into the medium. Inactivation of F. S. H. during incubation could not be demonstrated; once (in females) some production of F. S. H. was even observed. The amount of F. S. H. which is released into the medium is influenced by the quantity of F. S. H. stored in the hypophyses. Hypophyses from male rats pretreated with oestradiol released relatively more F. S. H. into the medium than hypophyses from control animals. On the other hand, pretreatment with testosterone caused the pituitary glands to release less F. S. H. into the medium. In agreement with these results, hypophyses from intact male rats released relatively less F. S. H. than hypophyses from intact female rats. These facts support the hypothesis that androgens depress pituitary F. S. H.-secretion by inhibiting the capacity to release it, while oestrogens, which can even promote this property of the pituitary gland, also act by directly inhibiting its production.


1999 ◽  
pp. 512-520 ◽  
Author(s):  
JJ Evans ◽  
S Janmohamed

OBJECTIVE: Production of the appropriate pattern of gonadotrophin levels is crucial to proper functioning of the female reproductive system. We aimed to establish whether the pituitary has invariant secretory characteristics when isolated from in vivo controls. We aimed to obtain information during both the rising and declining phases of the gonadotrophin surge. DESIGN: This study investigated factors that are directed at the pituitary by isolating it from the acute influences of the in vivo environment and studying gonadotrophin secretion in vitro. METHODS: Pituitaries of adult female rats were collected at selected times during the day of pro-oestrus and incubated in vitro, and at the same time blood was collected. Peripheral levels of LH and FSH were measured over the whole day of pro-oestrus, basal in vitro secretions of LH and FSH from pituitaries were measured, GnRH-stimulated LH and FSH secretion were assessed, and the responsiveness of LH and FSH secretion to GnRH were calculated. RESULTS: Peripheral levels of LH peaked at 1800 h (P<0.02) followed by a subsequent decline. In contrast, although FSH had a peak at 1800 h (P<0.01), serum levels were also high at the end pro-oestrus. The profile of basal LH and FSH secretion from the pituitary in vitro, in the absence of added secretagogue, resembled that of the peripheral blood levels of each gonadotrophin. Pituitaries collected at 1800 h secreted most LH (P<0. 02). FSH secretion was low early on the day of pro-oestrus and then increased to and was maintained at high levels in the last quarter of the day (P<0.01).When the pituitaries were stimulated with GnRH the patterns of LH release and FSH release approximated those observed for basal release. Responsiveness of the pituitaries to GnRH was calculated by determining the ratio of GnRH-stimulated release to basal release. However, low levels of gonadotrophin were secreted even from pituitaries which were highly responsive as determined from consideration of percentage increase in secretion induced by GnRH. CONCLUSIONS: The secretory activity was dependent on the time of day the pituitaries were collected. Since the secretion occurred after the tissue had been removed from the direct influence of the in vivo environment, the variations in secretion must reflect long-lasting components of the mechanism that regulate gonadotrophin concentrations. There were changes in both LH and FSH responsiveness to GnRH stimulation over the day of pro-oestrus. Delineation of the time courses and changing predominance of multiple processes is needed to assist understanding the mechanisms underlying the female reproductive cycle.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4402-4410 ◽  
Author(s):  
Sara R. Jørgensen ◽  
Mille D. Andersen ◽  
Agnete Overgaard ◽  
Jens D. Mikkelsen

Abstract GnRH is a key player in the hypothalamic control of gonadotropin secretion from the anterior pituitary gland. It has been shown that the mammalian counterpart of the avian gonadotropin inhibitory hormone named RFamide-related peptide (RFRP) is expressed in hypothalamic neurons that innervate and inhibit GnRH neurons. The RFRP precursor is processed into 2 mature peptides, RFRP-1 and RFRP-3. These are characterized by a conserved C-terminal motif RF-NH2 but display highly different N termini. Even though the 2 peptides are equally potent in vitro, little is known about their relative distribution and their distinct roles in vivo. In this study, we raised an antiserum selective for RFRP-1 and defined the distribution of RFRP-1-immunoreactive (ir) neurons in the rat brain. Next, we analyzed the level of RFRP-1-ir during postnatal development in males and females and investigated changes in RFRP-1-ir during the estrous cycle. RFRP-1-ir neurons were distributed along the third ventricle from the caudal part of the medial anterior hypothalamus throughout the medial tuberal hypothalamus and were localized in, but mostly in between, the dorsomedial hypothalamic, ventromedial hypothalamic, and arcuate nuclei. The number of RFRP-1-ir neurons and the density of cellular immunoreactivity were unchanged from juvenile to adulthood in male rats during the postnatal development. However, both parameters were significantly increased in female rats from peripuberty to adulthood, demonstrating prominent gender difference in the developmental control of RFRP-1 expression. The percentage of c-Fos-positive RFRP-1-ir neurons was significantly higher in diestrus as compared with proestrus and estrus. In conclusion, we found that adult females, as compared with males, have significantly more RFRP-1-ir per cell, and these cells are regulated during the estrous cycle.


1966 ◽  
Vol 51 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Bernard F. Rice ◽  
Albert Segaloff

ABSTRACT Ovaries were transplanted to the spleens of castrate male rats. After 120 days, slices of ovarian tissue, composed predominantly of corpora lutea, were incubated in Krebs-Ringer bicarbonate medium containing 50 μc acetate-1-14C. Radioactive steroid formation was assessed quantitatively by reverse isotope dilution. The formation of radioactive progesterone and 20α-hydroxy-pregn-4-en-3-one was established. The formation of radioactive 3β-hydroxy-pregn-5-en-20-one, androst-4-ene-3,17-dione, 17-hydroxyprogesterone, testosterone, oestrone and 17β-oestradiol could not be established. It appears that the corpus luteum of the rat, induced by endogenous gonadotrophins, forms only progestins from acetate-1-14C. Contrary to results previously obtained with ovarian tissue transplanted to female rats, radioactive steroid formation in vitro appeared to be augmented by luteinizing hormone (NIH-LH-S1) added to the incubation flasks. Administration of human chorionic gonadotrophin (200 IU/day) for 5 days prior to autopsy did not enhance acetate-1-14C incorporation in vitro.


Sign in / Sign up

Export Citation Format

Share Document