Differential effects of electrolytic and chemical hypothalamic lesions on LH pulses in rats

1988 ◽  
Vol 255 (5) ◽  
pp. E583-E590 ◽  
Author(s):  
C. L. Sisk ◽  
A. A. Nunez ◽  
M. M. Thebert

Electrolytic lesions of the arcuate nucleus were made in anesthetized adult castrated male rats. Luteinizing hormone (LH) pulse frequency averaged 2.4 pulses/h in controls but declined to a mean of 0.5 pulses/h in rats with bilateral damage to the arcuate nucleus. Because these lesions also damaged the median eminence, we tested the possibility that this disruption of LH secretion was due to coincidental damage to fibers of passage projecting to median eminence. Axon-sparing chemical lesions of the arcuate nucleus were made by intracranial injections of N-methyl-DL-aspartate (NMA) in anesthetized adult castrated rats. Mean LH pulse frequency was 2.3 and 2.5 pulses/h in control and NMA-injected rats, respectively. NMA injections destroyed arcuate neuronal cell bodies and produced a proliferation of glial cells within the nucleus. There was no apparent difference in the immunocytochemical staining intensity and distribution of luteinizing hormone-releasing hormone (LHRH) fibers in median eminence in rats receiving NMA or sham injections. These results suggest that the disruptive effects of electrolytic lesions of the arcuate nucleus on pulsatile LH secretion are a result of coincidental damage to LHRH neuronal projections to the median eminence and that neuronal cell bodies within the arcuate nucleus are not necessary for normal pulsatile LH secretion in male rats.

Author(s):  
K.A. Carson ◽  
C.B. Nemeroff ◽  
M.S. Rone ◽  
J.S. Kizer ◽  
J.S. Hanker

Biochemical, physiological, pharmacological, and more recently enzyme histo- chemical data have indicated that cholinergic circuits exist in the hypothalamus. Ultrastructural correlates of these pathways such as acetylcholinesterase (AchE) positive neurons in the arcuate nucleus (ARC) and stained terminals in the median eminence (ME) have yet to be described. Initial studies in our laboratories utilizing chemical lesioning and microdissection techniques coupled with microchemical and light microscopic enzyme histo- chemical studies suggested the existence of cholinergic neurons in the ARC which project to the ME (1). Furthermore, in adult male rats with Halasz deafferentations (hypothalamic islands composed primarily of the isolated ARC and the ME) choline acetyltransferase (ChAc) activity, a good marker for cholinergic neurons, was not significantly reduced in the ME and was only somewhat reduced in the ARC (2). Treatment of neonatal rats with high doses of monosodium 1-glutamate (MSG) results in a lesion largely restricted to the neurons of the ARC.


2017 ◽  
Vol 233 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Kinuyo Iwata ◽  
Yuyu Kunimura ◽  
Keisuke Matsumoto ◽  
Hitoshi Ozawa

Hyperandrogenic women have various grades of ovulatory dysfunction, which lead to infertility. The purpose of this study was to determine whether chronic exposure to androgen affects the expression of kisspeptin (ovulation and follicle development regulator) or release of luteinizing hormone (LH) in female rats. Weaned females were subcutaneously implanted with 90-day continuous-release pellets of 5α-dihydrotestosterone (DHT) and studied after 10 weeks of age. Number of Kiss1-expressing cells in both the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) was significantly decreased in ovary-intact DHT rats. Further, an estradiol-induced LH surge was not detected in DHT rats, even though significant differences were not observed between DHT and non-DHT rats with regard to number of AVPV Kiss1-expressing cells or gonadotrophin-releasing hormone (GnRH)-immunoreactive (ir) cells in the presence of high estradiol. Kiss1-expressing and neurokinin B-ir cells were significantly decreased in the ARC of ovariectomized (OVX) DHT rats compared with OVX non-DHT rats; pulsatile LH secretion was also suppressed in these animals. Central injection of kisspeptin-10 or intravenous injection of a GnRH agonist did not affect the LH release in DHT rats. Notably, ARC Kiss1-expressing cells expressed androgen receptors (ARs) in female rats, whereas only a few Kiss1-expressing cells expressed ARs in the AVPV. Collectively, our results suggest excessive androgen suppresses LH surge and pulsatile LH secretion by inhibiting kisspeptin expression in the ARC and disruption at the pituitary level, whereas AVPV kisspeptin neurons appear to be directly unaffected by androgen. Hence, hyperandrogenemia may adversely affect ARC kisspeptin neurons, resulting in anovulation and menstrual irregularities.


Endocrinology ◽  
2020 ◽  
Vol 161 (2) ◽  
Author(s):  
Su Young Han ◽  
Isaiah Cheong ◽  
Tim McLennan ◽  
Allan E Herbison

Abstract The gonadotrophin-releasing hormone (GnRH) pulse generator drives pulsatile luteinizing hormone (LH) secretion essential for fertility. However, the constraints within which the pulse generator operates to drive efficient LH pulsatility remain unclear. We used optogenetic activation of the arcuate nucleus kisspeptin neurons, recently identified as the GnRH pulse generator, to assess the efficiency of different pulse generator frequencies in driving pulsatile LH secretion in intact freely behaving male mice. Activating the pulse generator at 45-minute intervals generated LH pulses similar to those observed in intact male mice while 9-minute interval stimulation generated LH profiles indistinguishable from gonadectomized (GDX) male mice. However, more frequent activation of the pulse generator resulted in disordered LH secretion. Optogenetic experiments directly activating the distal projections of the GnRH neuron gave the exact same results, indicating the pituitary to be the locus of the high frequency decoding. To evaluate the state-dependent behavior of the pulse generator, the effects of high-frequency activation of the arcuate kisspeptin neurons were compared in GDX and intact mice. The same stimulus resulted in an overall inhibition of LH release in GDX mice but stimulation in intact males. These studies demonstrate that the GnRH pulse generator is the primary determinant of LH pulse profile and that a nonlinear relationship exists between pulse generator frequency and LH pulse frequency. This may underlie the ability of stimulatory inputs to the pulse generator to have opposite effects on LH secretion in intact and GDX animals.


Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4249-4258 ◽  
Author(s):  
Casey C Nestor ◽  
Lique M. Coolen ◽  
Gail L. Nesselrod ◽  
Miro Valent ◽  
John M. Connors ◽  
...  

Orphanin FQ (OFQ), a member of the opioid family, is found in many areas of the hypothalamus and, when given centrally OFQ inhibits episodic LH secretion in rodents and sheep. Because GnRH neurons are devoid of the appropriate receptors to mediate steroid negative feedback directly, neurons that release OFQ may be involved. Using immunocytochemistry, we first determined that most OFQ neurons in the arcuate nucleus (ARC) and other hypothalamic regions of luteal phase ewes contained both estrogen receptor α and progesterone (P) receptor. Given a similar high degree of steroid receptor colocalization in other ARC subpopulations, we examined whether OFQ neurons of the ARC contained those other neuropeptides and neurotransmitters. OFQ did not colocalize with kisspeptin, tyrosine hydroxylase, or agouti-related peptide, but all ARC OFQ neurons coexpressed proopiomelanocortin. To test for a role for endogenous OFQ, we examined the effects of an OFQ receptor antagonist, [Nphe1,Arg14,Lys15]Nociceptin-NH2 (UFP-101) (30 nmol intracerebroventricular/h), on LH secretion in steroid-treated ewes in the breeding season and ovary-intact ewes in anestrus. Ovariectomized ewes with luteal phase concentrations of P and estradiol showed a significant increase in LH pulse frequency during infusion of UFP-101 (4.5 ± 0.5 pulses/6 h) compared with saline infusion (2.6 ± 0.4 pulses/6 h), whereas ewes implanted with only estradiol did not. Ovary-intact anestrous ewes displayed no significant differences in LH pulse amplitude or frequency during infusion of UFP-101. Therefore, we conclude that OFQ mediates, at least in part, the negative feedback action of P on GnRH/LH pulse frequency in sheep.


2019 ◽  
Vol 110 (7-8) ◽  
pp. 671-687 ◽  
Author(s):  
Eulalia A. Coutinho ◽  
Melanie Prescott ◽  
Sabine Hessler ◽  
Christopher J. Marshall ◽  
Allan E. Herbison ◽  
...  

Introduction: The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation. Objective: We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation. Methods: We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons. Results: Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect. Conclusions: These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion.


1983 ◽  
Vol 96 (2) ◽  
pp. 181-193 ◽  
Author(s):  
G. B. Martin ◽  
R. J. Scaramuzzi ◽  
J. D. Henstridge

The effects of oestradiol-17β, androstenedione, progesterone and time of the year on the pulsatile secretion of LH were tested in ovariectomized Merino ewes (n = 32). The steroids were administered by small subcutaneous implants, and the LH pulses were observed in samples taken at intervals of 15 min for 12 h in spring 1979, autumn 1980 and spring 1980, seasons corresponding to successive periods of anoestrus, breeding season and anoestrus. During spring, oestradiol alone was able to reduce the frequency of the LH pulses, while progesterone, either alone or in combination with oestradiol, had little effect. During autumn, on the other hand, neither oestradiol nor progesterone could significantly reduce the frequency of the pulses when administered independently, whereas the combined treatment was very effective. Androstenedione had no significant effect on pulse frequency at either time of the year, either alone or in any combination with oestradiol and progesterone. The basal levels of LH, over which the pulses are superimposed, were reduced by oestradiol alone in both seasons. Progesterone alone had no consistent effects, but interacted significantly with oestradiol and this combined treatment maintained low basal levels most effectively at all times. Androstenedione had no significant effect. The amplitude of the pulses increased throughout the course of the experiment. Within seasons, the amplitudes were significantly higher in the presence of oestradiol and progesterone, but were not significantly affected by androstenedione. It was concluded that certain of the ovarian steroids exert negative feedback on the tonic secretion of LH primarily by reducing the frequency of the pulses, and that the changes in LH secretion attributable to season and phases of the oestrous cycle can be accounted for entirely by the responses of the hypothalamus to oestradiol and progesterone. The role of the androstenedione secreted by the ovary in the ewe remains obscure.


2000 ◽  
Vol 58 (2A) ◽  
pp. 246-251 ◽  
Author(s):  
MARCILÍO H. MIRANDA-NETO ◽  
MARIA MONTSERRAT D. P. FURLAN ◽  
DÉBORA DE MELLO G. SANT'ANA ◽  
SÔNIA L. MOLINARI ◽  
JOSÉ ANTÔNIO DE SOUZA

This study compared the areas of cell body and nucleus profiles of the myenteric neurons in the antimesenteric and intermediate regions of the duodenum of adult rats. Five male rats were used. The duodenum was removed and dissected to whole-mount preparations, which were stained by the Giemsa technique. The areas of cell body and nucleus profiles of 100 neurons, 50 from each region, of each animal, were assessed with image analyser. Based on the global mean±SD of the areas of cell body profiles, neurons were labelled as small, medium or large. It was observed that the neurons did not differ significantly in size or incidence between the antimesenteric and intermediate regions. However, the nuclei of the small and medium neurons were significantly smaller in the latter region. It is discussed that the smaller nuclear size could be related to the cell bodies being slightly smaller on this region and to a possible smaller biosynthetic activity which would influence nuclear size.


Sign in / Sign up

Export Citation Format

Share Document