Analysis of PTHRP binding and signal transduction mechanisms in benign and malignant squamous cells

1992 ◽  
Vol 262 (5) ◽  
pp. E599-E607 ◽  
Author(s):  
J. J. Orloff ◽  
M. B. Ganz ◽  
A. E. Ribaudo ◽  
W. J. Burtis ◽  
M. Reiss ◽  
...  

We have explored a potential autocrine role for parathyroid hormone-related protein (PTHRP) in malignant squamous carcinoma cells (SqCC) and their nonmalignant counterpart, human epidermal keratinocytes (HK). Specific binding of Tyr36 human PTHRP-(1-36)NH2 (125I-[Tyr36]hPTHRP-(1-36)NH2) was identified in 75% of unselected SqCC lines. In contrast, no binding was detected on the mouse keratinocyte line BALB-MK or on five different HK lines. Although each SqCC and keratinocyte line secreted immunoreactive PTHRP into its medium, there was no correlation between PTHRP concentration and number of binding sites. Inhibition of binding by [Tyr36]hPTHRP-(1-36)NH2 yielded half-maximal inhibitory concentration values of approximately 100 nM in all SqCC lines. Affinity cross-linking of SqCC cells revealed 98- and 70-kDa binding proteins with similar affinity (approximately 100 nM). Exposure of fura-2-loaded SqCC cells to PTHRP and PTH resulted in equivalent, dose-dependent transient increases in intracellular calcium [half-maximal effective concentration (EC50) = 0.08 nM]. PTHRP also increased intracellular calcium in HK (EC50 = 0.05 nM). No adenosine 3',5'-cyclic monophosphate (cAMP) response to PTHRP or PTH was elicited in either SqCC or HK, despite brisk isoproterenol responses in both. We conclude that high-capacity low-affinity binding sites for PTHRP are detectable in the majority of SqCC lines but not in HK. These low-affinity binding sites are unlikely to represent receptors. The sensitive intracellular calcium response suggests the additional presence of high-affinity receptors on SqCC as well as on HK. However, the failure of PTHRP or PTH to stimulate cAMP production in otherwise cyclase-competent cells suggests that these are not classical PTH receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

1990 ◽  
Vol 258 (3) ◽  
pp. G395-G403
Author(s):  
S. Katsushima ◽  
H. Adachi ◽  
T. Honda ◽  
S. Sato ◽  
T. Kusui ◽  
...  

We examined the effect of cholecystokinin (CCK) on the receptors for vasoactive intestinal peptide (VIP) and secretin in rat pancreatic acini. CCK decreased the specific binding of 125I-VIP and 125I-secretin by 42 and 51%, respectively. This CCK-induced inhibition was caused by an apparent decrease in the capacity of high-affinity binding sites of VIP and secretin receptors. CR 1409, a specific antagonist of CCK, abolished CCK-induced binding inhibition, whereas 12-O-tetradecanoylphorbol-13-acetate, A23187, and cycloheximide did not affect the binding of the radioligands. Both N2,O2-dibutyryl guanosine 3',5'-cyclic monophosphate (Bt2cGMP) and nitroprusside inhibited the specific binding of 125I-VIP. This inhibition, however, was because of an apparent decrease in the capacity of low-affinity binding sites on VIP receptors. CCK-induced downregulation of VIP and secretin receptors was associated with the diminished acinar response to VIP or secretin-induced adenosine 3',5'-cyclic monophosphate accumulation and amylase secretion, whereas neither Bt2cGMP nor nitroprusside affected VIP-induced amylase secretion. Data suggest that CCK-induced downregulation is mediated by the initial interaction of CCK with CCK receptors followed by some postreceptor process, which appears unrelated to protein kinase C, calcium mobilization, decrease in protein synthesis, or cellular cGMP increases. This downregulation, at least in part, accounts for CCK-induced restricted stimulation of amylase secretion by VIP and secretin.


1984 ◽  
Vol 218 (1) ◽  
pp. 75-80 ◽  
Author(s):  
T Green ◽  
H C Ford

Uptake of [3H]pteroylglutamic acid [(3H]PteGlu) was studied in microvilli isolated from the syncytiotrophoblast of the human term placenta. The effect of changes in medium osmolality on the equilibrium uptake of [3H]PteGlu was negligible, which suggested that the observed uptake represented binding to proteins on or within the microvilli rather than translocation of the vitamin from the incubation medium to a free state in the intravesicular fluid. Equilibrium uptake experiments performed over a wide range of [3H]PteGlu concentrations disclosed a class of binding sites with an association constant of 0.3 nM-1 as well as a second class of sites with high capacity and low affinity. Binding of [3H]PteGlu at the high-affinity sites was inhibited by tetrahydrofolate and N5-methyltetrahydrofolate, but not by several other structural analogues. It is likely that the high-affinity binding sites are receptors for maternal plasma folate; however, their role in placental transport or storage of the vitamin was not delineated in these studies.


1986 ◽  
Vol 64 (5) ◽  
pp. 515-520 ◽  
Author(s):  
B. L. Tepperman ◽  
B. D. Soper

These studies were designed to examine the changes in the characteristics of prostaglandin E2 (PGE2) binding to porcine oxyntic mucosa in the response to oral ingestion of salicylates. Either acetylsalicylic acid (ASA) or salicylic acid (SA) was administered to conscious pigs (100 mg/kg in 30 mL of an equimolar concentration of NaHCO3) once a day for 1, 3, 10, or 20 days. In control experiments a similar volume of 0.3 M NaHCO3 was administered for similar durations. Mucosal ulceration and the characteristics of the binding of [3H]PGE2 to a 30 000 × g membrane preparation of oxyntic mucosa were examined. Generation of mucosal PGE2 was measured by radioimmunoassay. ASA treatment resulted in an increase in the number and severity of mucosal ulcers and a decrease in PGE2 levels within the first treatment day. By day 20 the degree of ulceration had decreased in spite of a persistent reduction of mucosal PGE2 generation. A variable degree of ulceration was observed in SA-treated animals. In control animals only a single class of binding sites for [3H]PGE2 was evident. After 3 days of ASA treatment a second class of binding sites with a high affinity dissociation constant appeared. There was a decrease in the high affinity binding of [3H]PGE2 after 20 days of ASA ingestion. Low affinity binding was not altered. ASA treatment resulted in a significant increase in specific binding capacities for both families of binding sites. SA treatment did not consistently alter PGE2 binding characteristics from control at any time period studied. These data suggest that SA treatment results in a small degree of mucosal damage in the absence of a significant reduction in tissue generation of PGE2 or changes in PGE2 binding. Damage in response to ASA ingestion was associated with a reduction in both endogenous synthesis of PGE2 and an increase in the concentration of both low and high affinity binding sites for PGE2. The reduction in mucosal ulceration on day 20 in spite of depressed endogenous PGE2 coincides with an increase in PGE2 binding.


2016 ◽  
Vol 16 (3) ◽  
pp. 414-425 ◽  
Author(s):  
Rahayu Zulkapli ◽  
Fathilah Abdul Razak ◽  
Rosnah Binti Zain

Cancers involving the oral cavity, head, and neck regions are often treated with cisplatin. In cancer therapy, the main target is to eliminate unwanted cancerous cells. However, reports on the nonselective nature of this drug have raised few concerns. Incorrect nutritional habits and lifestyle practices have been directly linked to cancer incidence. Nutrients with antioxidant activity inhibit cancer cells development, destroying them through oxidative stress and apoptosis. α-tocopherol, the potent antioxidant form of vitamin E is a known scavenger of free radicals. In vitro study exhibited effective antitumor activity of α-tocopherol on ORL-48 at 2.5 ± 0.42 µg/mL. Cisplatin exhibited stronger activity at 1.0 ± 0.15 µg/mL, but unlike α-tocopherol it exhibited cytotoxicity on normal human epidermal keratinocytes at very low concentration (<0.1 µg/mL). Despite the lower potency of α-tocopherol, signs of apoptosis such as the shrinkage of cells and appearance of apoptotic bodies were observed much earlier than cisplatin in time lapse microscopy. No apoptotic vesicles were formed with cisplatin, instead an increased population of cells in the holoclone form which may suggest different induction mechanisms between both agents. High accumulation of cells in the G0/G1 phase were observed through TUNEL and annexin V-biotin assays, while the exhibition of ultrastructural changes of the cellular structures verified the apoptotic mode of cell death by both agents. Both cisplatin and α-tocopherol displayed cell cycle arrest at the Sub G0 phase. α-tocopherol thus, showed potential as an antitumour agent for the treatment of oral cancer and merits further research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hajnalka Jankovics ◽  
Boglarka Kovacs ◽  
Andras Saftics ◽  
Tamas Gerecsei ◽  
Éva Tóth ◽  
...  

AbstractReliable measurement of the binding kinetics of low molecular weight analytes to their targets is still a challenging task. Often, the introduction of labels is simply impossible in such measurements, and the application of label-free methods is the only reliable choice. By measuring the binding kinetics of Ni(II) ions to genetically modified flagellin layers, we demonstrate that: (1) Grating-Coupled Interferometry (GCI) is well suited to resolve the binding of ions, even at very low protein immobilization levels; (2) it supplies high quality kinetic data from which the number and strength of available binding sites can be determined, and (3) the rate constants of the binding events can also be obtained with high accuracy. Experiments were performed using a flagellin variant incorporating the C-terminal domain of the nickel-responsive transcription factor NikR. GCI results were compared to affinity data from titration calorimetry. We found that besides the low-affinity binding sites characterized by a micromolar dissociation constant (Kd), tetrameric FliC-NikRC molecules possess high-affinity binding sites with Kd values in the nanomolar range. GCI enabled us to obtain real-time kinetic data for the specific binding of an analyte with molar mass as low as 59 Da, even at signals lower than 1 pg/mm2.


1987 ◽  
Vol 65 (1) ◽  
pp. 18-22 ◽  
Author(s):  
I. Takayanagi ◽  
K. Koike ◽  
A. Nakagoshi

Interactions of derivatives of befunolol (BFE-37, BFE-55, and BFE-61), carteolol, and pindolol with β-adrenoceptors were tested in guinea pig isolated taenia caecum. All the drugs used acted as partial agonists on the β-adrenoceptors when compared with isoprenaline, a full agonist. The pA2 values of BFE-61, carteolol, and pindolol were significantly larger than their pD2 values, while there was no significant difference between the pA2 and pD2 values for BFE-37 and BFE-55. The specific binding of [3H]befunolol to microsomal fractions from the guinea pig taenia caecum distinguished two binding sites, high affinity and low affinity sites. Both sites are considered to be bound by 50 nM of [3H]befunolol. Specific 3H binding was displaced by BFE-61, carteolol, and pindolol in a biphasic manner but in a monophasic manner by BFE-37 and BFE-55. Furthermore, [3H]befunolol binding was only partially displaced by BFE-55 but completely displaced by the other drugs used. These results, together with our previous findings, suggest that BFE-61, carteolol, and pindolol discriminate between the two affinity binding sites in the β-adrenoceptors, which are not discriminated between by BFE-37, and further that BFE-55 may bind with only the high affinity site.


Sign in / Sign up

Export Citation Format

Share Document