Regulation of porcine insulin-like growth factor I and growth hormone receptor mRNA expression by energy status

1994 ◽  
Vol 266 (5) ◽  
pp. E776-E785 ◽  
Author(s):  
P. A. Weller ◽  
M. J. Dauncey ◽  
P. C. Bates ◽  
J. M. Brameld ◽  
P. J. Buttery ◽  
...  

Regulation of insulin-like growth factor I (IGF-I) and growth hormone (GH) receptor mRNA in liver and muscle by energy status was assessed in 2-mo-old pigs by altering thermoregulatory demand and energy intake over a 5-wk period to produce a range of plasma IGF-I concentrations from 3.5 +/- 0.7 to 28.9 +/- 6.2 nmol/l. These values were related directly to growth rates (0.06 +/- 0.02 to 0.44 +/- 0.01 kg/day) and total hepatic IGF-I mRNA levels. Increased growth rates were accompanied by an increase in hepatic class 1 and class 2 IGF-I mRNA levels and an increase in the ratio of class 2 to class 1 IGF-I mRNA in liver, suggesting a distinct role for class 2 expression in the endocrine growth response. High levels of class 1 transcripts and a virtual absence of class 2 transcripts characterized all muscle tissues examined, and there was no correlation with plasma IGF-I levels. This suggests that growth promotion in response to increased energy status is regulated via endocrine hepatic IGF-I rather than via a paracrine response. The levels of GH receptor mRNA were positively correlated with overall growth rate (P < 0.005) in liver and negatively correlated (P < 0.05) in muscle, indicating distinct tissue-specific effects of energy status.

1989 ◽  
Vol 122 (3) ◽  
pp. 651-656 ◽  
Author(s):  
K. E. Bornfeldt ◽  
H. J. Arnqvist ◽  
B. Enberg ◽  
L. S. Mathews ◽  
G. Norstedt

ABSTRACT Insulin-like growth factor-I (IGF-I) mRNA and GH receptor mRNA levels were analysed in different tissues from rats made diabetic with streptozotocin, fasted rats and rats fed with a protein-reduced diet. Diabetes decreased IGF-I mRNA levels in liver, heart, diaphragm, kidney and aorta, but not in brain. GH receptor mRNA levels were decreased in heart and diaphragm, but not in liver and kidney. Fasting decreased IGF-I mRNA in all tissues studied except brain, and decreased GH receptor mRNA in liver, heart and diaphragm, but not in kidney. A protein-reduced diet decreased hepatic IGF-I mRNA levels but did not significantly affect other tissues, while GH receptor mRNA levels were reduced in liver and diaphragm. In conclusion, both diabetes and limited nutrition affected IGF-I and GH receptor mRNA in different tissues, but the two mRNAs were not co-ordinately regulated in all tissues studied. While reduced GH receptor gene expression may thus be responsible for decreased IGF-I gene expression in some states and tissues, additional regulatory mechanisms may be of importance. Journal of Endocrinology (1989) 122, 651–656


1995 ◽  
Vol 132 (4) ◽  
pp. 497-501 ◽  
Author(s):  
Saul Malozowski ◽  
Toni G Parmer ◽  
Sabina Trojan ◽  
George R Merriam ◽  
Geula Gibori ◽  
...  

Malozowski S, Parmer TG, Trojan S, Merriam GR, Gibori G, Roberts Jr CT, LeRoith D, Werner H, Zilberstein M. Growth hormone (GH) modulates insulin-like growth factor I (IGF-I) and type I IGF receptor mRNA levels in the ovary of prepubertal GH-deficient rats. Eur J Endocrinol 1995;132:497–501. ISSN 0804–4643 In order to explore the potential role of growth hormone (GH) in modulating insulin-like growth factor I (IGF-I) gene expression in the prepubertal rat ovary, female rats were rendered GH deficient by neonatal administration of monosodium glutamate (MSG). One group of rats received vehicle and served as the control. At 21 days of age, MSG-treated rats received either GH or vehicle for 2 weeks. On days 21, 24, 28 and 31 animals were weighed and subsets were sacrificed for liver RNA extraction. The remaining animals were sacrificed at day 35 when livers and ovaries were collected, and serum was obtained for GH determinations. The IGF-I mRNA levels were estimated by Northern blots and corroborated further by slot-blot analysis. The MSG-treated rats had lower body weights (p < 0.01) and GH levels (p < 0.05) than controls. Growth hormone replacement significantly accelerated the weight gain of MSG-treated rats. At day 24 and thereafter, three RNA IGF-I species (7.5, 1.8 and 0.8–1.2 kB) were seen in the liver. In the ovary, at age 35 days, two major IGF-I mRNA species (7.5 and 0.8–1.2kb) were seen. The MSG treatment consistently reduced the levels of both IGF-I mRNA species in the ovary. Growth hormone administration partially restored their expression, both in the liver and in the ovary. In addition, ovarian type I IGF receptor mRNA levels were increased in the MSG-treated rats when compared to controls. This trend was reversed by GH replacement. In summary, we have found that in prepubertal female rats rendered GH deficient with MSG, ovarian IGF-I gene expression is reduced while type I IGF receptor mRNA levels are increased. These findings are reversed with GH replacement. These results suggest a physiological role for GH in modulating IGF-I and type I IGF receptor genes in the ovary. Saul Malozowski, FDA, HFD-510, Rockville, MD 20897, USA


2000 ◽  
Vol 167 (2) ◽  
pp. 295-303 ◽  
Author(s):  
JW van Neck ◽  
NF Dits ◽  
V Cingel ◽  
IA Hoppenbrouwers ◽  
SL Drop ◽  
...  

The effects of growth hormone (GH) in regulating the expression of the hepatic and renal GH and insulin-like growth factor (IGF) system were studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG) at different doses (0, 1.25, 2.5, 5 and 10 mg/kg/day) to mice for 7 days. No differences were observed in the groups with respect to body weight, food consumption or blood glucose. However, a dose-dependent decrease was observed in circulating IGF-I levels and in hepatic and renal IGF-I levels at the highest doses. In contrast, in the 5 and 10 mg/kg/day GHRA groups, circulating and hepatic transcriptional IGF binding protein-3 (IGFBP-3) levels were not modified, likely resulting in a significantly decreased IGF-I/IGFBP-3 ratio. Hepatic GH receptor (GHR) and GH binding protein (GHBP) mRNA levels increased significantly in all GHRA dosage groups. Endogenous circulatory GH levels increased significantly in the 2.5 and 5 mg/kg/day GHRA groups. Remarkably, increased circulating IGFBP-4 and hepatic IGFBP-4 mRNA levels were observed in all GHRA administration groups. Renal GHR and GHBP mRNA levels were not modified by GHRA administration at the highest doses. Also, renal IGFBP-3 mRNA levels remained unchanged in most GHRA administration groups, whereas IGFBP-1, -4 and -5 mRNA levels were significantly increased in the 5 and 10 mg/kg/day GHRA administration groups. In conclusion, the effects of a specific GHR blockade on circulating, hepatic and renal GH/IGF axis reported here, may prove useful in the future clinical use of GHRAs.


1992 ◽  
Vol 135 (1) ◽  
pp. 115-123 ◽  
Author(s):  
C. Ohlsson ◽  
A. Nilsson ◽  
O. Isaksson ◽  
J. Bentham ◽  
A. Lindahl

ABSTRACT The effects of tri-iodothyronine (T3) and insulin-like growth factor-I (IGF-I) on [3H]thymidine incorporation, alkaline phosphatase (ALP) activity and IGF-I receptor mRNA levels were studied in rat epiphyseal chondrocytes cultured in monolayer. Chondrocytes from enzymatically digested rat tibia epiphyseal growth plates were seeded in monolayer culture and precultured for 7–14 days in Ham's F-12 medium supplemented with 10% (v/v) newborn calf serum and 1% (v/v) of a serum substitute. After preculture the medium was changed to Ham's F-12 medium containing 1% (v/v) serum from hypophysectomized rats, and the effects of T3 and/or IGF-I on DNA synthesis ([3H]thymidine incorporation), ALP activity (a late marker of differentiated epiphyseal chondrocytes) and IGF-I receptor mRNA levels were studied. ALP activity was increased by T3 in a dose-dependent manner with a maximal response at 10 μg T3/1 (678 ±86% compared with control culture). The increase in ALP activity was accompanied by a concomitant decrease in [3H]thymidine incorporation (52 ±14% compared with control culture). Human GH (hGH; 50 μg/l) and IGF-I (25 μg/l) had no stimulatory effect on ALP activity. However IGF-I (10 μg/l) exerted an inhibition on the T3 (10 μg/l)-induced increase in ALP activity (64 ± 9% compared with T3-treated culture). T3 (3 μg/l) inhibited the increase in [3H]thymidine incorporation caused by 25 μg IGF-I/l(51 ± 13% compared with IGF-I-treated culture). Furthermore, IGF-I receptor mRNA levels were increased by 10 μg T3/l (137 ±4·2% compared with control culture) while no effect of hGH (50 μg/l) or IGF-I (25 μg/l) was demonstrated. Both T3 and IGF-I were shown to interact with epiphyseal chondrocytes and both substances seemed to affect cell proliferation and maturation and therefore longitudinal bone growth. Furthermore, the results indicated that IGF-I is important for proliferation of the cells while T3 initiates the terminal differentiation of epiphyseal chondrocytes. Journal of Endocrinology (1992) 135, 115–123


Sign in / Sign up

Export Citation Format

Share Document