Local concentrations of macrophage colony-stimulating factor mediate osteoclastic differentiation

1995 ◽  
Vol 269 (6) ◽  
pp. E1024-E1030 ◽  
Author(s):  
S. L. Perkins ◽  
S. J. Kling

Macrophage colony-stimulating factor (M-CSF) is essential for differentiation of osteoclasts and macrophages from a common bone marrow precursor. Using ST-2 stromal cell/murine bone marrow coculture, we studied the effects of increasing amounts of M-CSF on differentiation of macrophages and osteoclasts. Addition of exogenous M-CSF caused a dose-dependent 98% decrease in tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a 2.5-fold increase in nonspecific esterase-staining macrophages. Similar decrease in osteoclastic functional activity, including 125I-labeled calcitonin binding and calcitonin-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production, were observed. Addition of exogenous M-CSF beyond 6 days in coculture had a decreasing ability to inhibit osteoclast formation, suggesting that M-CSF exerts its effects early in osteoclast differentiation, during the proposed proliferative phase of osteoclast formation. Similarly, early addition of neutralizing anti-M-CSF inhibited osteoclast formation, with diminishing effects beyond day 9. These results suggest that local high concentrations of M-CSF may influence the early determination of terminal differentiation into either macrophages or osteoclasts.

Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1148-1154 ◽  
Author(s):  
BR Blazar ◽  
MB Widmer ◽  
CC Soderling ◽  
S Gillis ◽  
DA Vallera

Abstract In vivo administration of murine recombinant granulocyte/macrophage colony stimulating factor (rGM-CSF) was evaluated for effects on survival and engraftment in an allogeneic murine bone marrow transplantation (BMT) model involving T-cell depletion of donor marrow. The model provides a high incidence of graft failure/rejection. Recipients of continuous subcutaneous infusions of rGM-CSF had a significant survival advantage when compared with untreated controls. However, a significantly lower incidence of donor cell engraftment was noted. Hematological parameters were not substantially affected. When rGM-CSF was administered intraperitoneally (IP), twice daily injections closely approximated the effects of continuous infusion on survival. Single IP injections were without significant effects on survival or engraftment. These results demonstrate that prolonged frequent in vivo exposure to rGM-CSF can significantly improve survival but significantly decreases donor cell repopulation in recipients of T-cell- depleted histoincompatible marrow grafts.


Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hasnawati Saleh ◽  
Damien Eeles ◽  
Jason M. Hodge ◽  
Geoffrey C. Nicholson ◽  
Ran Gu ◽  
...  

IL-33 is an important inflammatory mediator in allergy, asthma, and joint inflammation, acting via its receptor, ST2L, to elicit Th2 cell cytokine secretion. IL-33 is related to IL-1 and IL-18, which both influence bone metabolism, IL-18 in particular inhibiting osteoclast formation and contributing to PTH bone anabolic actions. We found IL-33 immunostaining in osteoblasts in mouse bone and IL-33 mRNA expression in cultured calvarial osteoblasts, which was elevated by treatment with the bone anabolic factors oncostatin M and PTH. IL-33 treatment strongly inhibited osteoclast formation in bone marrow and spleen cell cultures but had no effect on osteoclast formation in receptor activator of nuclear factor-κB ligand/macrophage colony-stimulating factor-treated bone marrow macrophage (BMM) or RAW264.7 cultures, suggesting a lack of direct action on immature osteoclast progenitors. However, osteoclast formation from BMM was inhibited by IL-33 in the presence of osteoblasts, T cells, or mature macrophages, suggesting these cell types may mediate some actions of IL-33. In bone marrow cultures, IL-33 induced mRNA expression of granulocyte macrophage colony-stimulating factor, IL-4, IL-13, and IL-10; osteoclast inhibitory actions of IL-33 were rescued only by combined antibody ablation of these factors. In contrast to osteoclasts, IL-33 promoted matrix mineral deposition by long-term ascorbate treated primary osteoblasts and reduced sclerostin mRNA levels in such cultures after 6 and 24 h of treatment; sclerostin mRNA was also suppressed in IL-33-treated calvarial organ cultures. In summary, IL-33 stimulates osteoblastic function in vitro but inhibits osteoclast formation through at least three separate mechanisms. Autocrine and paracrine actions of osteoblast IL-33 may thus influence bone metabolism.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2707-2713 ◽  
Author(s):  
Jeny Maree Lean ◽  
Karen Fuller ◽  
Timothy John Chambers

Abstract Although bone resorption and osteoclast numbers are reduced in osteopetrotic (op/op) mice, osteoclasts are nevertheless present and functional, despite the absence of macrophage colony-stimulating factor (M-CSF). This suggests that alternative factors can partly compensate for the crucial actions of M-CSF in osteoclast induction. It was found that when nonadherent bone marrow cells were incubated in RANKL with Flt3 ligand (FL) without exogenous M-CSF, tartrate-resistance acid phosphatase (TRAP)–positive cells were formed, and bone resorption occurred. Without FL, only macrophagelike TRAP-negative cells were present. Granulocyte-macrophage CSF, stem cell factor, interleukin-3, and vascular endothelial growth factor could not similarly replace the need for M-CSF. TRAP-positive cell induction in FL was not due to synergy with M-CSF produced by the bone marrow cells themselves because FL also enabled their formation from the hemopoietic cells of op/op mice, which lack any M-CSF. FL appeared to substitute for M-CSF by supporting the differentiation of adherent cells that express mRNA for RANK and responsiveness to RANKL. To determine whether FL can account for the compensation for M-CSF deficiency that occurs in vivo, FL signaling was blockaded in op/op mice by the injection of soluble recombinant Flt3. It was found that the soluble receptor induced a substantial decrease in osteoclast number, strongly suggesting that FL is responsible for the partial compensation for M-CSF deficiency that occurs in these mice.


Blood ◽  
1988 ◽  
Vol 72 (4) ◽  
pp. 1148-1154
Author(s):  
BR Blazar ◽  
MB Widmer ◽  
CC Soderling ◽  
S Gillis ◽  
DA Vallera

In vivo administration of murine recombinant granulocyte/macrophage colony stimulating factor (rGM-CSF) was evaluated for effects on survival and engraftment in an allogeneic murine bone marrow transplantation (BMT) model involving T-cell depletion of donor marrow. The model provides a high incidence of graft failure/rejection. Recipients of continuous subcutaneous infusions of rGM-CSF had a significant survival advantage when compared with untreated controls. However, a significantly lower incidence of donor cell engraftment was noted. Hematological parameters were not substantially affected. When rGM-CSF was administered intraperitoneally (IP), twice daily injections closely approximated the effects of continuous infusion on survival. Single IP injections were without significant effects on survival or engraftment. These results demonstrate that prolonged frequent in vivo exposure to rGM-CSF can significantly improve survival but significantly decreases donor cell repopulation in recipients of T-cell- depleted histoincompatible marrow grafts.


1989 ◽  
Vol 170 (5) ◽  
pp. 1635-1648 ◽  
Author(s):  
E L Racoosin ◽  
J A Swanson

Incubation of murine bone marrow-derived macrophages (BMM) in medium containing recombinant macrophage colony-stimulating factor (rM-CSF) stimulated influx, efflux, and the net accumulation of the fluid-phase pinocytic marker, lucifer yellow (LY). Stimulation was dose dependent, occurred within 5 min of addition of the growth factor, and was sustained. Previous experiments had shown that BMM treated with PMA were stimulated to accumulate LY, but compared with rM-CSF-treated cells, the onset of stimulation in PMA-treated macrophages was slower. In further comparisons of rM-CSF- and PMA-stimulated LY accumulation, it was found that rM-CSF-stimulated pinocytosis could be abolished by pretreatment with 0.5 mg/ml trypsin, whereas neither unstimulated nor PMA-stimulated LY accumulation was affected by trypsin pretreatment. These findings indicate that the rM-CSF response was initiated at the cell surface, while the PMA response occurred via intracellular (or trypsin-resistant) receptors. However, once initiated, the pinocytic responses elicited by either agent were very similar. First, rM-CSF-treated cells, like PMA-treated cells, showed extensive ruffling and formation of large phase-bright pinosomes. Second, both rM-CSF- and PMA-stimulated LY accumulation could be inhibited by treatment of cells with the cytoskeleton destabilizing drugs nocodazole, colchicine, or cytochalasin D. Finally, rM-CSF, like PMA, was found to stimulate efflux of LY from cells preloaded with the dye. Thus, both rM-CSF and PMA stimulate the net rate of solute flow through the macrophage endocytic compartment.


1991 ◽  
Vol 173 (5) ◽  
pp. 1291-1294 ◽  
Author(s):  
H Kodama ◽  
M Nose ◽  
S Niida ◽  
A Yamasaki

Severe deficiency of osteoclasts, monocytes, and peritoneal macrophages in osteopetrotic (op/op) mutant mice is caused by the absence of functional macrophage colony-stimulating factor (M-CSF). To clarify the role of M-CSF in the osteoclast differentiation, we established a clonal stromal cell line OP6L7 capable of supporting hemopoiesis from newborn op/op mouse calvaria. Although very few macrophages appeared in the cocultures of bone marrow cells and OP6L7 cells, a 50-fold larger number of macrophages was detected in the day 7 cocultures when purified recombinant human M-CSF (rhM-CSF) was exogenously supplied. Tartrate-resistant acid phosphatase (TRACP; a marker enzyme of osteoclasts)-positive cells appeared only when bone marrow cells were cultured in contact with OP6L7 cells and both rhM-CSF and 1 alpha, 25 (OH)2D3 were added. The TRACP-positive cells became multinucleated with increasing time in culture and expressed the c-fms/M-CSF receptor. These results indicate that both contact with stromal cells and M-CSF are requisite for osteoclast differentiation under physiological conditions.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4481-4492 ◽  
Author(s):  
V Ramsfjell ◽  
OJ Borge ◽  
OP Veiby ◽  
J Cardier ◽  
MJ Jr Murphy ◽  
...  

Thrombopoietin (Tpo), the ligand for c-mpl, has been shown to be the principal regulator of megakaryocytopoiesis and platelet production. The ability of Tpo to potently stimulate the growth of committed megakaryocyte (Mk) progenitor cells has been studied in detail. Murine fetal liver cells, highly enriched in primitive progenitors, have been shown to express c-mpl, but little is known about the ability of Tpo to stimulate the growth and differentiation of primitive multipotent bone marrow (BM) progenitor cells. Here, we show that Tpo alone and in combination with early acting cytokines can stimulate the growth and multilineage differentiation of Lin-Sca-1+ BM progenitor cells. In particular, Tpo potently synergized with the ligands for c-kit (stem cell factor [SCF]) and flt3 (FL) to stimulate an increase in the number and size of clones formed from Lin-Sca-1+ progenitors. When cells were plated at 1 cell per well, the synergistic effect of Tpo was observed both in fetal calf serum-supplemented and serum-depleted medium and was decreased if the addition of Tpo to cultures was delayed for as little as 24 hours, suggesting that Tpo is acting directly on the primitive progenitors. Tpo added to SCF + erythropoietin (Epo)-supplemented methylcellulose cultures potently enhanced the formation of multilineage colonies containing granulocytes, macrophages, erythrocytes, and Mks. SCF potently enhanced Tpo-stimulated production of high-ploidy Mks from Lin- Sca-1+ progenitors, whereas the increased growth response obtained when combining Tpo with FL did not translate into increased Mk production. The ability of Tpo and SCF to synergistically enhance the growth of Lin- Sca-1+ progenitors was predominantly observed in the more primitive rhodamine 123(lo) fraction. Tpo also enhanced growth of Lin- Sca-1+ progenitors when combined with interleukin-3 (IL-3) and IL-11 but not with IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, or Epo. Epo, which has high homology to Tpo, was unable to stimulate the growth of Lin-Sca-1+ progenitors alone or in combination with SCF or FL, suggesting that c-mpl is expressed on more primitive stages of progenitors than the Epo receptor. Thus, the present studies show the potent ability of Tpo to enhance the growth of primitive multipotent murine BM progenitors in combination with multiple early acting cytokines and documents its unique ability to synergize with SCF to enhance Mk production from such progenitors.


Sign in / Sign up

Export Citation Format

Share Document