Muscle glycogen synthesis in recovery from intense exercise in humans

1997 ◽  
Vol 273 (2) ◽  
pp. E416-E424 ◽  
Author(s):  
J. Bangsbo ◽  
K. Madsen ◽  
B. Kiens ◽  
E. A. Richter

The present study examined the role of lactate and glucose as substrates for glyconeogenesis in muscle in recovery from high-intensity exercise in humans. Seven subjects performed approximately 100 min of intense intermittent one-legged knee extensor exercise on two occasions: with [high lactate (HL)] and without [control (C)] intense arm exercise between the leg exercise bouts, leading to end exercise arterial plasma lactate concentrations of 16.0 +/- 1.6 and 9.2 +/- 1.6 mmol/l, respectively (P < 0.05). At the end of exercise, muscle lactate and glycogen were similar in HL and C (20.5 +/- 1.3 vs. 17.3 +/- 2.0 mmol/kg wet wt and 48.1 +/- 11.3 vs. 56.3 +/- 8.6 mmol/kg wet wt, respectively). Muscle glycogen increased (P < 0.05) during the first 5 min of recovery only in HL, but after 90 min of recovery the muscle glycogen concentration was the same in C and HL (61.2 +/- 12.0 vs. 71.5 +/- 10.9 mmol/kg wet wt). Muscle lactate not released to the blood could maximally account for 28 (C) and 54% (HL) of the increase in muscle glycogen during 90 min of recovery or < 10% of glycogen synthesis after full recovery. The total net glucose uptake corresponded to 84 (C) and 57% (HL) of the glycogen synthesized. Apparently, muscle glyconeogenesis may occur in humans, but the role of lactate as a substrate is minor. Instead, blood glucose appears to be the most important precursor for muscle glycogen synthesis after intense exercise.

1991 ◽  
Vol 1 (4) ◽  
pp. 307-337 ◽  
Author(s):  
Robert A. Robergs

During the initial hours of recovery from prolonged exhaustive lower body exercise, muscle glycogen synthesis occurs at rates approximating 1-2 mmol·kg−1wet wt·if no carbohydrate is consumed. When carbohydrate is consumed during the recovery, the maximal rate of glycogen synthesis approximates 7-10 mmol·kg−1wet wt·. The rate of postexercise glycogen synthesis is lower if the magnitude of glycogen degradation is small, if less than 0.7 gm glucose·kg−1body wt·is ingested, when the recovery is active, and when the carbohydrate feeding is delayed. The rate of postexercise glycogen synthesis is not reduced during the initial hours (< 4) after eccentric exercise. For studies evaluating muscle glycogen synthesis in excess of 12 hours of recovery, average rates of glycogen synthesis are balow 4 mmo1·kg−1wet wt·. Glycogen synthesis is known to be impaired for time periods in excess of 24 hours following exercise causing eccentric muscle damage. Following intense exercise resulting in high concentrations of muscle lactate, muscle glycogen synthesis occurs at between 15-25 mmol·kg−1wet wt·. These synthesis rates occur without ingested carbohydrate during the recovery period and are maintained when a low intensity active recovery is performed.


1995 ◽  
Vol 269 (2) ◽  
pp. E309-E315 ◽  
Author(s):  
M. Varnier ◽  
G. P. Leese ◽  
J. Thompson ◽  
M. J. Rennie

To determine whether glutamine can stimulate human muscle glycogen synthesis, we studied in groups of six subjects the effect after exercise of infusion of glutamine, alanine+glycine, or saline. The subjects cycled for 90 min at 70-140% maximal oxygen consumption to deplete muscle glycogen; then primed constant infusions of glutamine (30 mg/kg; 50 mg.kg-1.h-1) or an isonitrogenous, isoenergetic mixture of alanine+glycine or NaCl (0.9%) were administered. Muscle glutamine remained constant during saline infusion, decreased 18% during alanine+glycine infusion (P < 0.001), but rose 16% during glutamine infusion (P < 0.001). By 2 h after exercise, muscle glycogen concentration had increased more in the glutamine-infused group than in the saline or alanine+glycine controls (+2.8 +/- 0.6, +0.8 +/- 0.4, and +0.9 +/- 0.4 mumol/g wet wt, respectively, P < 0.05, glutamine vs. saline or alanine+glycine). Labeling of glycogen by tracer [U-13C]glucose was similar in glutamine and saline groups, suggesting no effect of glutamine on the fractional rate of blood glucose incorporation into glycogen. The results suggest that, after exercise, increased availability of glutamine promotes muscle glycogen accumulation by mechanisms possibly including diversion of glutamine carbon to glycogen.


1991 ◽  
Vol 434 (1) ◽  
pp. 423-440 ◽  
Author(s):  
J Bangsbo ◽  
P D Gollnick ◽  
T E Graham ◽  
B Saltin

2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


1993 ◽  
Vol 265 (2) ◽  
pp. E275-E283 ◽  
Author(s):  
M. Kjaer ◽  
K. Engfred ◽  
A. Fernandes ◽  
N. H. Secher ◽  
H. Galbo

To investigate the role of sympathoadrenergic activity on glucose production (Ra) during exercise, eight healthy males bicycled 20 min at 41 +/- 2 and 74 +/- 4% maximal O2 uptake (VO2max; mean +/- SE) either without (control; Co) or with blockade of sympathetic nerve activity to liver and adrenal medulla by local anesthesia of the celiac ganglion (Bl). Epinephrine (Epi) was in some experiments infused during blockade to match (normal Epi) or exceed (high Epi) Epi levels during Co. A constant infusion of somatostatin and glucagon was given before and during exercise. At rest, insulin was infused at a rate maintaining euglycemia. During intense exercise, insulin infusion was halved to mimic physiological conditions. During exercise, Ra increased in Co from 14.4 +/- 1.0 to 27.8 +/- 3.0 mumol.min-1.kg-1 (41% VO2max) and to 42.3 +/- 5.2 (74% VO2max; P < 0.05). At 41% VO2max, plasma glucose decreased, whereas it increased during 74% VO2max. Ra was not influenced by Bl. In high Epi, Ra rose more markedly compared with control (P < 0.05), and plasma glucose did not fall during mild exercise and increased more during intense exercise (P < 0.05). Free fatty acid and glycerol concentrations were always lower during exercise with than without celiac blockade. We conclude that high physiological concentrations of Epi can enhance Ra in exercising humans, but normally Epi is not a major stimulus. The study suggests that neither sympathetic liver nerve activity is a major stimulus for Ra during exercise. The Ra response is enhanced by a decrease in insulin and probably by unknown stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
Kenia Mendes Rodrigues Castro ◽  
Rodrigo Leal de Paiva Carvalho ◽  
Geraldo Marco Rosa Junior ◽  
Beatriz Antoniassi Tavares ◽  
Luis Henrique Simionato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document