Mechanism of regulation of rabbit intestinal villus cell brush border membrane Na/H exchange by nitric oxide

2007 ◽  
Vol 292 (2) ◽  
pp. G475-G481 ◽  
Author(s):  
Steven Coon ◽  
Guohong Shao ◽  
Sheik Wisel ◽  
Raju Vulaupalli ◽  
Uma Sundaram

In the mammalian small intestine, coupled NaCl absorption occurs via the dual operation of Na/H and Cl/HCO3exchange on the villus cell brush border membrane (BBM). Although constitutive nitric oxide (cNO) has been demonstrated to alter gastrointestinal tract functions, how cNO may specifically alter these two transporters to regulate coupled NaCl absorption is unknown. In villus cells, inhibition of cNO synthase (cNOS) with l- NG-nitroarginine methylester (l-NAME) stimulated Na/H exchange whereas Cl/HCO3exchange was unaffected. In villus cell BBM vesicles (BBMV) prepared from rabbits treated with l-NAME, Na/H exchange was also stimulated. d-NAME, an inactive analog of l-NAME, and N6-(1-imonoethyl)-l-lysine dihydrochloride, a more selective inhibitor of inducible NO synthase, did not affect Na/H exchange. Kinetic studies demonstrated that the mechanism of stimulation is secondary to an increase in the maximal rate of uptake of Na, without an alteration in the affinity of the transporter for Na. Northern blot studies demonstrated an increase in the message for the BBM Na/H exchanger NHE3, and Western blot studies showed that the immunoreactive protein levels of NHE3 was increased when cNOS was inhibited. Thus these results indicate that cNO under nominal physiological states most likely maintains an inhibitory tone on small intestinal coupled NaCl absorption by specifically inhibiting BBM Na/H expression.

2021 ◽  
Vol 22 (8) ◽  
pp. 4171
Author(s):  
M Motiur Rahman ◽  
Alip Borthakur ◽  
Sheuli Afroz ◽  
Subha Arthur ◽  
Uma Sundaram

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl−/HCO3− exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl−/HCO3− exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl−/HCO3− exchangers, were unaltered. Thus, inhibition of villus cell Cl−/HCO3− exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl−, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.


2003 ◽  
Vol 285 (6) ◽  
pp. G1084-G1090 ◽  
Author(s):  
Steven Coon ◽  
Uma Sundaram

In the rabbit small intestine, there are three functionally different brush-border membrane (BBM) anion/HCO3- exchangers: 1) Cl/HCO3- exchange on the BBM of villus cells responsible for coupled NaCl absorption; 2) Cl/HCO3- exchange on the BBM of crypt cells possibly involved in HCO3- secretion; and 3) short-chain fatty acid (SCFA)/HCO3- exchange on the BBM of villus cells, which facilitates SCFA absorption. Although constitutive nitric oxide (cNO) has been postulated to alter many gastrointestinal tract functions, how cNO may specifically alter these three transporters is unknown. Inhibition of cNO synthase with NG-nitro-l-arginine methyl ester (l-NAME) 1) did not affect villus cell BBM Cl/HCO3 change, 2) stimulated crypt cell BBM Cl/HCO3- exchange, and 3) inhibited villus cell BBM SCFA/HCO3- exchange. d-NAME, an inactive analog of l-NAME, and l- N6-(1-iminoethyl)lysine, a more selective inhibitor of inducible NO, did not affect these transport processes. Kinetic studies demonstrated that 1) the mechanism of inhibition of crypt cell BBM Cl/HCO3- exchange is secondary to a decrease in the maximal rate of uptake of Cl, without an alteration in the affinity of the transporter for Cl, and 2) the mechanism of stimulation of villus cell BBM SCFA/HCO3- exchange is secondary to an increase in the affinity of the transporter for SCFA without an alteration in the maximal rate of uptake of SCFA. These results indicate that cNO uniquely regulates the three BBM anion/HCO3- transporters in the rabbit small intestine.


1999 ◽  
Vol 276 (1) ◽  
pp. G211-G218 ◽  
Author(s):  
Uma Sundaram ◽  
Steve Coon ◽  
Sheik Wisel ◽  
A. Brian West

In a rabbit model of chronic ileal inflammation, we previously demonstrated inhibition of Na-glucose cotransport (SGLT-1). The mechanism of inhibition was secondary to a decrease in the number of cotransporters and not solely secondary to an inhibition of Na-K-ATPase or altered affinity for glucose. In this study, we determined the effect of methylprednisolone (MP) on SGLT-1 inhibition during chronic ileitis. Treatment with MP almost completely reversed the reduction in SGLT-1 in villus cells from the chronically inflamed ileum. MP also reversed the decrease in Na-K-ATPase activity in villus cells during chronic ileitis. However, MP treatment reversed the SGLT-1 inhibition in villus cell brush-border membrane vesicles from the inflamed ileum, which suggested an effect of MP at the level of the cotransporter itself. Kinetic studies demonstrated that the reversal of SGLT-1 inhibition by MP was secondary to an increase in the maximal velocity for glucose without a change in the affinity. Analysis of immunoreactive protein levels of the cotransporter demonstrated a restoration of the cotransporter numbers after MP treatment in the chronically inflamed ileum. Thus MP treatment alleviates SGLT-1 inhibition in the chronically inflamed ileum by increasing the number of cotransporters and not solely secondary to enhancing the activity of Na-K-ATPase or by altering the affinity for glucose.


2005 ◽  
Vol 289 (6) ◽  
pp. G1030-G1035 ◽  
Author(s):  
Steven Coon ◽  
James Kim ◽  
Guohong Shao ◽  
Uma Sundaram

Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with NG-nitro-l-arginine methyl ester (l-NAME) resulted in the inhibition of Na-stimulated 3H- O-methyl-d-glucose uptake in villus cells. However, Na-stimulated alanine uptake was not affected in these cells. The l-NAME-induced reduction in SGLT-1 in villus cells was not secondary to an alteration in basolateral membrane Na-K-ATPase activity, which provides the favorable Na gradient for this cotransport process. In fact, SGLT-1 was inhibited in villus cell brush-border membrane (BBM) vesicles prepared from animals treated with l-NAME. Kinetic studies demonstrated that the mechanism of inhibition of SGLT-1 was secondary to a decrease in the affinity for glucose without a change in the maximal rate of uptake of glucose. Northern blot studies demonstrated no change in the mRNA levels of SGLT-1. Western blot studies demonstrated no significant change in the immunoreactive protein levels of SGLT-1 in ileal villus cell BBM from l-NAME-treated rabbits. These studies indicate that inhibition of cNO production inhibits SGLT-1 but not NAcT in the rabbit small intestine. Therefore, whereas cNO promotes Na-glucose cotransport, it does not affect NAcT in the mammalian small intestine.


1997 ◽  
Vol 273 (4) ◽  
pp. G913-G919 ◽  
Author(s):  
U. Sundaram ◽  
S. Wisel ◽  
V. M. Rajendren ◽  
A. B. West

In a rabbit model of chronic ileal inflammation, we previously demonstrated that coupled NaCl absorption was reduced because of an inhibition of Cl−/[Formula: see text]but not Na+/H+exchange on the brush-border membrane (BBM) of villus cells. In this study we determined the alterations in Na+-stimulated glucose [Na+- O-methyl-d-glucose (Na+-OMG)] absorption during chronic ileitis. Na+-OMG uptake was reduced in villus cells from the chronically inflamed ileum. Na+-K+-adenosinetriphosphatase (ATPase), which provides the favorable Na+gradient for this cotransporter in intact cells, was found to be reduced also. However, in villus cell BBM vesicles from the inflamed ileum Na+-OMG uptake was reduced as well, suggesting an effect at the level of the cotransporter itself. Kinetic studies demonstrated that Na+-OMG uptake in the inflamed ileum was inhibited by a decrease in the maximal rate of uptake for OMG without a change in the affinity. Analysis of steady-state mRNA and immunoreactive protein levels of this cotransporter demonstrates reduced expression. Thus Na+-glucose cotransport was inhibited in the chronically inflamed ileum, and the inhibition was secondary to a decrease in the number of cotransporters and not solely secondary to an inhibition of Na+-K+-ATPase or altered affinity for glucose.


1998 ◽  
Vol 275 (6) ◽  
pp. G1259-G1265 ◽  
Author(s):  
U. Sundaram ◽  
S. Wisel ◽  
S. Stengelin ◽  
W. Kramer ◽  
V. Rajendran

In the chronically inflamed ileum, unique mechanisms of alteration of similar transport processes suggest regulation by different immune-inflammatory mediator pathways. In a rabbit model of chronic ileitis, we previously demonstrated that Na+-glucose cotransport was inhibited by a decrease in the cotransporter numbers, whereas Na+-amino acid cotransport was inhibited by a decrease in the affinity for the amino acid. In this study, we demonstrated that Na+-bile acid cotransport was reduced in villus cells from the chronically inflamed ileum. In villus cell brush-border membrane vesicles from the chronically inflamed ileum, Na+-bile acid cotransport was reduced as well, suggesting a direct effect at the cotransporter itself. Kinetic studies demonstrated that Na+-bile acid cotransport was inhibited by both a decrease in the affinity as well as a decrease in the maximal rate of uptake of the bile acid. Analysis of steady-state mRNA and immunoreactive protein levels of the Na+-bile acid cotransporter also demonstrated some reduction during chronic ileitis. Thus, in the chronically inflamed ileum, the mechanisms of inhibition of Na+-glucose, Na+-amino acid, and Na+-bile acid cotransport are different. These data suggest that different cotransporters are uniquely altered either secondary to their intrinsic differences or by different immune-inflammatory mediators during chronic ileitis.


1985 ◽  
Vol 249 (6) ◽  
pp. G751-G760 ◽  
Author(s):  
D. J. Keljo ◽  
R. J. MacLeod ◽  
M. H. Perdue ◽  
D. G. Butler ◽  
J. R. Hamilton

We measured glucose transport in jejunal brush-border membrane vesicles isolated from piglets with acute viral diarrhea, comparing our results with those from control animals. Characterization of membranes from both study groups demonstrated comparable purity and integrity. In the presence of an inwardly directed Na SCN gradient, D-glucose accumulated in control vesicles to a concentration several times the 60-min equilibrium level. "Overshooting" uptake was much lower and more gradual in vesicles from 40-h transmissible gastroenteritis (TGE)-infected pigs compared with control pigs. Equilibrium kinetic studies, in which gramicidin was used to clamp membrane potential at zero, demonstrated a pattern of Na-dependent D-glucose transport in 40-h TGE-infected membranes that differed greatly from the control pattern. From an Eadie-Hofstee plot of stereospecific Na-dependent D-glucose uptake into control vesicles, a pattern suggesting two carrier populations emerged: one with a low-affinity, apparent Km equaling 52.63 +/- 13.81 mM and the other a high-affinity apparent Km equaling 3.92 +/- 0.24 mM for D-glucose. In 40-h TGE-infected membranes, the pattern conformed to a single line, suggesting a homogeneous population of low-affinity carriers, (Km = 37.03 +/- 1.92 mM), which did not differ from the low-affinity carriers seen in control animals. We conclude that the absence of the high-affinity D-glucose carriers in jejunal brush-border membrane is an important determinant of the defective glucose transport that characterizes viral diarrhea. Because previous studies have strongly suggested that in acute TGE diarrhea the epithelium is composed of relatively undifferentiated crypt-type cells, we speculate that high-affinity D-glucose carriers are lacking in normal crypt epithelial cells and that they are incorporated into brush-border membranes of jejunal enterocytes as the cells differentiate in the course of their migration from crypt to villus.


1982 ◽  
Vol 242 (3) ◽  
pp. G272-G280 ◽  
Author(s):  
C. M. Liedtke ◽  
U. Hopfer

The mechanisms of Cl- transport across the brush-border membrane from rat small intestine were investigated in vitro in isolated vesicles and in vivo in ileal and jejunal segments. A Cl--OH- exchange mechanism was demonstrated in isolated vesicles by observing concentrative Cl- uptake driven by a pH gradient (extravesicular pH less than intravesicular pH). A Cl- conductance pathway was demonstrated by concentrative Cl- uptake driven by a K+ diffusion potential. The K+ diffusion potential was generated by a K+ concentration gradient in the presence of valinomycin (extravesicular K+ concentration greater than intravesicular K+ concentration). Furosemide and stilbene 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS) strongly inhibited the Cl--OH- exchange but did not affect the Cl- conductance pathway, Na+-dependent glucose transport, and Na+-Na+ exchange. Under isotope exchange conditions at equilibrium, SITS inhibited Cl- transport up to 63%, indicating that this portion of Cl- transport is mediated by the Cl--OH- exchange transporter, with the remainder presumably due to the Cl- conductance pathway. In perfused small intestinal segments, Na+, Cl-, HCO3(-), and water were absorbed from the lumen in the absence of SITS. The presence of 5 mM SITS inhibited NaCl absorption and decreased HCO3(-) and water absorption in both jejunum and ileum but did not affect glucose absorption. The inhibition of in vivo salt absorption by SITS suggests that the Cl--OH- exchange mechanism plays a major role in NaCl absorption in intact enterocytes.


Sign in / Sign up

Export Citation Format

Share Document