Modulation of Cl−/OH− exchange activity in Caco-2 cells by nitric oxide

2002 ◽  
Vol 283 (3) ◽  
pp. G626-G633 ◽  
Author(s):  
Seema Saksena ◽  
Ravinder K. Gill ◽  
Irfan A. Syed ◽  
Sangeeta Tyagi ◽  
Waddah A. Alrefai ◽  
...  

The present studies were undertaken to determine the direct effects of nitric oxide (NO) released from an exogenous donor, S-nitroso- N-acetyl pencillamine (SNAP) on Cl−/OH− exchange activity in human Caco-2 cells. Our results demonstrate that NO inhibits Cl−/OH− exchange activity in Caco-2 cells via cGMP-dependent protein kinases G (PKG) and C (PKC) signal-transduction pathways. Our data in support of this conclusion can be outlined as follows: 1) incubation of Caco-2 cells with SNAP (500 μM) for 30 min resulted in ∼50% inhibition of DIDS-sensitive36Cl uptake; 2) soluble guanylate cyclase inhibitors Ly-83583 and (1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one significantly blocked the inhibition of Cl−/OH− exchange activity by SNAP; 3) addition of 8-bromo-cGMP (8-BrcGMP) mimicked the effects of SNAP; 4) specific PKG inhibitor KT-5823 significantly inhibited the decrease in Cl−/OH− exchange activity in response to either SNAP or 8-BrcGMP; 5) Cl−/OH− exchange activity in Caco-2 cells in response to SNAP was not altered in the presence of protein kinase A (PKA) inhibitor (Rp-cAMPS), demonstrating that the PKA pathway was not involved; 6) the effect of NO on Cl−/OH− exchange activity was mediated by PKC, because each of the two PKC inhibitors chelerythrine chloride and calphostin C blocked the SNAP-mediated inhibition of Cl−/OH− exchange activity; 7) SO[Formula: see text]/OH− exchange in Caco-2 cells was unaffected by SNAP. Our results suggest that NO-induced inhibition of Cl−/OH− exchange may play an important role in the pathophysiology of diarrhea associated with inflammatory bowel diseases.

2015 ◽  
Vol 308 (5) ◽  
pp. F444-F449 ◽  
Author(s):  
Nancy J. Hong ◽  
Jeffrey L. Garvin

Luminal flow stimulates endogenous nitric oxide (NO) and superoxide (O2−) production by renal thick ascending limbs (TALs). The delicate balance between these two factors regulates Na transport in TALs; NO enhances natriuresis, whereas O2− augments Na absorption. Endogenous, flow-stimulated O2− enhances Na/H exchange (NHE). Flow-stimulated NO reduces flow-induced O2−, a process mediated by cGMP-dependent protein kinase (PKG). However, whether flow-stimulated, endogenously-produced NO diminishes O2−-stimulated NHE activity and the signaling pathway involved are unknown. We hypothesized that flow-induced NO reduces the stimulation of NHE activity caused by flow-induced O2− via PKG in TALs. Intracellular pH recovery after an acid load was measured as an indicator of NHE activity in isolated, perfused rat TALs. l-Arginine, the NO synthase substrate, decreased NHE activity by 34 ± 5% ( n = 5; P < 0.04). The O2− scavenger tempol decreased NHE activity by 46 ± 8% ( n = 6; P < 0.004) in the absence of NO. In the presence of l-arginine, the inhibitory effect of tempol on NHE activity was reduced to −19 ± 6% ( n = 6; P < 0.03). The soluble guanylate cyclase inhibitor LY-83583 blocked the effect of l-arginine thus restoring tempol's effect on NHE activity to −42 ± 4% ( n = 6; P < 0.0005). The PKG inhibitor KT-5823 also inhibited l-arginine's effect on tempol-reduced NHE activity (−43 ± 5%; n = 5; P < 0.03). We conclude that flow-induced NO reduces the stimulatory effect of endogenous, flow-induced O2− on NHE activity in TALs via an increase in cGMP and PKG activation.


1993 ◽  
Vol 265 (1) ◽  
pp. C201-C211 ◽  
Author(s):  
T. A. Wyatt ◽  
T. M. Lincoln ◽  
K. B. Pryzwansky

The effects of guanosine 3',5'-cyclic monophosphate (cGMP) on the secretory response of activated human neutrophils were investigated using LY-83583, an inhibitor of soluble guanylate cyclase, and L-arginine, the precursor of nitric oxide formation. A 30% release of myeloperoxidase (MPO) and lactoferrin (LF) from the primary and specific granules, respectively, was detected by enzyme-linked immunosorbent assay in adhered neutrophils stimulated with 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) or 20 microM A-23187. LY-83583 (100 microM) inhibited the release of both LF and MPO after stimulation with FMLP or A-23187. Conversely, preincubation of neutrophils with 0.5 mM L-arginine augmented the release of LF and MPO in FMLP- and A-23187-stimulated cells. Concurrent with the increase in the degranulation response was an elevation of cGMP levels in L-arginine-treated cells, while stimulated cGMP levels were reduced in LY-83583-treated cells. Furthermore, cGMP-dependent protein kinase (G-kinase) activity was reduced in LY-83583-treated cells, as determined by the delay in G-kinase translocation to intermediate filaments and the inhibition of vimentin phosphorylation. Degranulation, elevation of cGMP levels, and targeting of G-kinase were also dependent on the concentration of A-23187 or FMLP. These data suggest that activators of neutrophil degranulation mediate this response through a cGMP-dependent protein kinase mechanism.


1994 ◽  
Vol 266 (1) ◽  
pp. G154-G160 ◽  
Author(s):  
R. A. Travagli ◽  
R. A. Gillis

The purpose of our study was to explore whether nitric oxide was involved as an intercellular messenger in the dorsal motor nucleus of the vagus (DMV). To achieve this purpose we examined DMV motoneurons of the rat in vitro with the use of the extracellular cell-attached recording technique. The motoneurons, in general, exhibit a spontaneous discharge and when exposed to NO-producing drugs (i.e., 3-300 microM L-arginine and 10-100 microM S-nitroso-N-acetylpenicillamine) exhibit a concentration-related increase in their spontaneous firing rate. Because NO activates soluble guanylate cyclase and increases guanosine 3',5'-cyclic monophosphate (cGMP), we tested dibutyryl-cGMP (30-300 microM) and found that it also excites DMV neurons. Perfusion of the DMV neurons with N omega-nitro-L-arginine (300 microM), an inhibitor of NO synthase (NOS), and with NO scavenger, reduced hemoglobin (1 microM), counteracted the excitatory effect of L-arginine and N-methyl-D-aspartate (NMDA). Perfusion of the preparation with LY-83583 (10 microM), an inhibitor of guanylate cyclase, also counteracted the effects of L-arginine and NMDA. These data indicate that NOS is present in DMV neurons, and that the excitatory effect of NMDA on these neurons is due in part to formation of NO and the resulting accumulation of cGMP in DMV neurons.


Reproduction ◽  
2011 ◽  
Vol 141 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Erica Miraglia ◽  
Federico De Angelis ◽  
Elena Gazzano ◽  
Hossain Hassanpour ◽  
Angela Bertagna ◽  
...  

Nitric oxide (NO), a modulator of several physiological processes, is involved in different human sperm functions. We have investigated whether NO may stimulate the motility of human spermatozoa via activation of the soluble guanylate cyclase (sGC)/cGMP pathway. Sperm samples obtained by masturbation from 70 normozoospermic patients were processed by the swim-up technique. The kinetic parameters of the motile sperm-rich fractions were assessed by computer-assisted sperm analysis. After a 30–90 min incubation, the NO donor S-nitrosoglutathione (GSNO) exerted a significant enhancing effect on progressive motility (77, 78, and 78% vs 66, 65, and 62% of the control at the corresponding time), straight linear velocity (44, 49, and 48 μm/s vs 34, 35, and 35.5 μm/s), curvilinear velocity (81, 83, and 84 μm/s vs 68 μm/s), and average path velocity (52, 57, and 54 μm/s vs 40, 42, and 42 μm/s) at 5 μM but not at lower concentrations, and in parallel increased the synthesis of cGMP. A similar effect was obtained with the NO donor spermine NONOate after 30 and 60 min. The GSNO-induced effects on sperm motility were abolished by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (a specific sGC inhibitor) and mimicked by 8-bromo-cGMP (8-Br-cGMP; a cell-permeating cGMP analog); the treatment with Rp-8-Br-cGMPS (an inhibitor of cGMP-dependent protein kinases) prevented both the GSNO- and the 8-Br-cGMP-induced responses. On the contrary, we did not observe any effect of the cGMP/PRKG1 (PKG) pathway modulators on the onset of hyperactivated sperm motility. Our results suggest that NO stimulates human sperm motility via the activation of sGC, the subsequent synthesis of cGMP, and the activation of cGMP-dependent protein kinases.


1998 ◽  
Vol 275 (5) ◽  
pp. G1185-G1192 ◽  
Author(s):  
Raj K. Goyal ◽  
Xue D. He

A nitric oxide (NO)-like product of thel-arginine NO synthase pathway has been shown to be a major inhibitory neurotransmitter that is involved in the slow component of the inhibitory junction potential (IJP) elicited by stimulation of nonadrenergic, noncholinergic nerves. However, the exact nature of the nitrergic transmitter, the role of cGMP, and the involvement of a potassium or a chloride conductance in the slow IJP remain unresolved. We examined the effects of soluble guanylate cyclase inhibitors LY-83583 and 1 H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), potassium-channel blockers and putative chloride-channel blockers diphenylamine-2-carboxylate (DPC) and niflumic acid (NFA) on the hyperpolarization elicited by an NO ⋅ donor, diethylenetriamine/NO adduct (DNO), NO in solution, and an NO+ donor, sodium nitroprusside (SNP), in the guinea pig ileal circular muscle. Effects of these blockers on purinergic (fast) and nitrergic (slow) IJP were also examined. DNO-induced hyperpolarization and nitrergic slow IJP were suppressed by LY-83583 or ODQ and DPC or NFA but not by the potassium-channel blocker apamin. In contrast, hyperpolarization caused by SNP or solubilized NO gas and purinergic fast IJP were antagonized by apamin but not by inhibitors of guanylate cyclase or chloride channels. These results demonstrate biological differences in the actions of different redox states of NO and suggest that NO ⋅ is the nitrergic inhibitory neurotransmitter.


1996 ◽  
Vol 270 (3) ◽  
pp. H869-H874 ◽  
Author(s):  
M. J. Wilderman ◽  
W. M. Armstead

It has previously been observed that nitric oxide (NO) and the opioids Met- and Leu-enkephalin contribute to hypoxia-induced pial artery dilation in the newborn pig. The present study was designed to investigate the relationship between NO and opioids in hypoxic pial dilation. Piglets equipped with closed cranial windows were used to measure pial artery diameter and collect cortical periarachnoid cerebrospinal fluid (CSF) for assay of opioids. Sodium nitroprusside (SNP; 10(-8) and 10(-6) M) elicited pial dilation that was blunted by the soluble guanylate cyclase inhibitor LY-83583 (10(-5) M; 10 +/- 1 and 23 +/- 1 vs. 3 +/- 1 and 7 +/- 1% for 10(-8) and 10(-6) M SNP before and after LY-83583, respectively). SNP-induced dilation was accompanied by increased CSF Met-enkephalin, and coadministration of LY-83583 with SNP blocked these increases in CSF opioid concentration (1,144 +/- 59, 2,215 +/- 165, and 3,413 +/- 168 vs. 1,023 +/- 16, 1,040 +/- 18, and 1,059 +/- 29 pg/ml for control and 10(-8) and 10(-6) M SNP before and after LY-83583, respectively). SNP-induced release of CSF Leuenkephalin was also blocked by LY-83583. Similar blunted vascular and biochemical effects of SNP were observed with coadministration of the purported guanosine 3', 5'-cyclic monophosphate (cGMP) antagonist, the phosphorothioate analogue of 8-bromo-cGMP (BrcGMP) [(R)-p-BrcGMP[S]; 10(-5) M]. The cGMP analogue, BrcGMP, elicited dilation that was also accompanied by increased CSF Met- and Leu-enkephalin. Vascular and biochemical effects of BrcGMP were blunted by (R)-p-cGMP[S] and unchanged by LY-83583. Hypoxia-induced pial artery dilation was attenuated by N omega-nitro-L-arginine (L-NNA; 10(-6) M), an NO synthase inhibitor (25 +/- 2 vs. 14 +/- 1%). Hypoxic pial dilation was accompanied by increased CSF Met-enkephalin, and these increases were attenuated by L-NNA (1,137 +/- 60 and 3,491 +/- 133 vs. 927 +/- 25 and 2,052 +/- 160 pg/ml for control and hypoxia before and after L-NNA, respectively). Hypoxia also increased CSF Leuenkephalin, and these CSF changes were similarly attenuated by L-NNA. These data show that cGMP increases CSF Met- and Leu-enkephalin. Furthermore, these data suggest that NO contributes to hypoxic dilation, at least in part, via formation of cGMP and the subsequent release of opioids.


2018 ◽  
Author(s):  
Vu Thao-Vi Dao ◽  
Mahmoud H. Elbatreek ◽  
Martin Deile ◽  
Pavel I. Nedvetsky ◽  
Andreas Güldner ◽  
...  

AbstractNitric oxide (NO)-cyclic GMP (cGMP) signaling is a vasoprotective pathway therapeutically targeted for example in pulmonary hypertension. Its dysregulation in disease is incompletely understood. Here we show in pulmonary artery endothelial cells that feedback inhibition by NO of the NO receptor, the cGMP forming soluble guanylate cyclase (sGC), may contribute to this. Both endogenous NO from endothelial NO synthase or exogenous NO from NO donor compounds decreased sGC protein and activity. This was not mediated by cGMP as the NO-independent sGC stimulator or direct activation of cGMP-dependent protein kinase did not mimic it. Thiol-sensitive mechanisms were also not involved as the thiol-reducing agent, N-acetyl-L-cysteine did not prevent this feedback. Instead, both in-vitro and in-vivo and in health and acute respiratory lung disease, chronically elevated NO led to the inactivation and degradation of sGC whilst leaving the heme-free isoform, apo-sGC, intact or even increasing its levels. Thus, NO regulates sGC in a bimodal manner, acutely stimulating and chronically inhibiting, as part of self-limiting direct feedback that is cGMP-independent. In high NO disease conditions, this is aggravated but can be functionally recovered in a mechanism-based manner by apo-sGC activators that re-establish cGMP formation.


Sign in / Sign up

Export Citation Format

Share Document