Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells

2005 ◽  
Vol 288 (6) ◽  
pp. G1159-G1169 ◽  
Author(s):  
Xin Guo ◽  
Jaladanki N. Rao ◽  
Lan Liu ◽  
Tongtong Zou ◽  
Kaspar M. Keledjian ◽  
...  

Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by α-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca2+ concentration ([Ca2+]cyt), because either increased or decreased [Ca2+]cyt did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by ∼70% following polyamine depletion, whereas its protein half-life was reduced from ∼120 min in control cells to ∼75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin.

2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2011 ◽  
Vol 301 (1) ◽  
pp. L40-L49 ◽  
Author(s):  
Leslie A. Mitchell ◽  
Christian E. Overgaard ◽  
Christina Ward ◽  
Susan S. Margulies ◽  
Michael Koval

Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.


2020 ◽  
Vol 31 (20) ◽  
pp. 2249-2258
Author(s):  
Alexander S. Dowdell ◽  
Ian M. Cartwright ◽  
Matthew S. Goldberg ◽  
Rachael Kostelecky ◽  
Tyler Ross ◽  
...  

The transcription factor hypoxia-inducible factor (HIF) mediates adaptation to hypoxia. We found that HIF regulates the autophagy protein ATG9A in intestinal epithelial cells. Subsequent knockdown of ATG9A resulted in tight junction mislocalization and cytoskeletal defects. These results suggest a link among the hypoxia response, autophagy, and junctional biogenesis.


2016 ◽  
Vol 120 (6) ◽  
pp. 692-701 ◽  
Author(s):  
Karol Dokladny ◽  
Micah N. Zuhl ◽  
Pope L. Moseley

A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.


2018 ◽  
Vol 315 (3) ◽  
pp. G341-G350 ◽  
Author(s):  
Liping Wu ◽  
Tadayuki Oshima ◽  
Min Li ◽  
Toshihiko Tomita ◽  
Hirokazu Fukui ◽  
...  

Eosinophilic esophagitis (EoE) is an allergy-mediated disease that is accompanied by IL-13 overexpression and an impaired esophageal barrier. Filaggrin (FLG) and tight junction (TJ) proteins are considered to contribute to epithelial barrier function. However, their functional involvement in EoE has not been elucidated. Here, we aimed to determine the IL-13-mediated barrier dysfunction and expression of TJ-related proteins in EoE and to characterize interactions among TJ-related proteins involved in the barrier function of the esophageal epithelium. Biopsy specimens from EoE patients were analyzed. Primary human esophageal epithelial cells (HEECs) were cultured using an air-liquid interface (ALI) system. The permeability of TJs was assayed by biotinylation. Transepithelial electrical resistance (TEER) was measured after stimulation with IL-13 and after siRNA silencing of FLG expression. FLG and TJ genes and proteins were assessed by quantitative RT-PCR, Western blot analysis, and immunofluorescent staining. The biotinylation reagent diffused through the paracellular spaces of whole stratified epithelial layers in EoE biopsy samples. The TEER decreased in ALI-cultured HEECs after IL-13 stimulation. Although the protein level of FLG decreased, that of the TJ proteins increased in the mucosa of EoE biopsy samples and in ALI-cultured HEECs after IL-13 stimulation. IL-13 altered the staining patterns of TJ proteins and the epithelial morphology. FLG siRNA transfection significantly decreased TEER. The IL-13-mediated reduced esophageal barrier is associated with the altered expression pattern but not with the levels of TJ-associated proteins. A deficiency of FLG altered the stratified epithelial barrier. NEW & NOTEWORTHY Esophageal permeability to small molecules was increased in patients with eosinophilic esophagitis (EoE) and could be induced by IL-13 in our unique air-liquid interface-cultured primary multilayer human esophageal epithelial cells in vitro. A deficiency of filaggrin disrupted the esophageal stratified epithelial barrier. The decreased esophageal barrier in EoE was associated with the altered staining pattern of tight junction proteins, although the levels of the proteins themselves do not appear to be changed.


2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Qianru Hui ◽  
Emily Ammeter ◽  
Shangxi Liu ◽  
Runqiang Yang ◽  
Peng Lu ◽  
...  

Abstract Eugenol (4-allyl-2-methoxyphenol) is an essential oil component, possessing antimicrobial, anti-inflammatory, and antioxidative properties; however, the effect of eugenol on porcine gut inflammation has not yet been investigated. In this study, an in vitro lipopolysaccharide (LPS)-induced inflammation model in porcine intestinal epithelial cells (IPEC-J2) has been set up. Cells were pretreated with 100 μM (16.42 mg/L) eugenol for 2 h followed by 10 μg/mL LPS stimulation for 6 h. Proinflammatory cytokine secretion; reactive oxygen species; gene expression of proinflammatory cytokines, tight junction proteins, and nutrient transporters; the expression and distribution of zonula occludens-1 (ZO-1); transepithelial electrical resistance (TEER); and cell permeability were measured to investigate the effect of eugenol on inflammatory responses and gut barrier function. The results showed that eugenol pretreatment significantly suppressed the LPS-stimulated interleukin-8 level and the mRNA abundance of tumor necrosis factor-α and restored the LPS-stimulated decrease of the mRNA abundance of tight junction proteins, such as ZO-1 and occludin, and the mRNA abundance of nutrient transporters, such as B0 1 system ASC sodium-dependent neutral amino acid exchanger 2, sodium-dependent glucose transporter 1, excitatory amino acid transporter 1, and peptide transporter 1. In addition, eugenol improved the expression and even redistribution of ZO-1 and tended to increase TEER value and maintained the barrier integrity. In conclusion, a low dose of eugenol attenuated inflammatory responses and enhanced selectively permeable barrier function during LPS-induced inflammation in the IPEC-J2 cell line.


Sign in / Sign up

Export Citation Format

Share Document