Mechanism of active potassium absorption and secretion in the rat colon

1984 ◽  
Vol 246 (5) ◽  
pp. G611-G617 ◽  
Author(s):  
E. S. Foster ◽  
J. P. Hayslett ◽  
H. J. Binder

To characterize and contrast the active potassium absorptive and secretory processes present in the rat colon, unidirectional 42K fluxes were performed under short-circuit conditions across isolated distal (D) and proximal (P) colonic mucosa of control rats and animals with hyperaldosteronism due to sodium depletion (aldosterone group). In the control D colon there was net potassium absorption (+0.51 +/- 0.07 mueq X h-1 X cm-2). The absorptive process appears electroneutral because net potassium flux ( JK net ) was unchanged in sodium-free Ringer solution (+0.76 +/- 0.12 mueq X h-1 X cm-2), whereas short-circuit current (Isc) was reduced to zero, and in chloride-free Ringer solution. In P colon of controls, net potassium secretion was -0.19 +/- 0.02 mueq X h-1 X cm-2 and was abolished by removal of sodium but not by removal of chloride. In both P and D colon aldosterone produced active potassium secretion (-0.39 +/- 0.06 mueq X h-1 X cm-2, P less than 0.001, and -0.90 +/- 0.07 mueq X h-1 X cm-2, P less than 0.001, respectively) that was sodium and chloride dependent. Although mucosal amiloride in D colon of aldosterone animals reduced net sodium flux to zero and reversed Isc from 4.1 +/- 0.6 to -1.1 +/- 0.1 mueq X h-1 X cm-2, net potassium secretion was not affected. Thus, in the presence of amiloride, Isc is accounted for by JK net (-0.93 +/- 0.12 mueq X h-1 X cm-2). These data indicate that 1) the active potassium absorptive process is electroneutral and could be explained by a potassium-proton exchange, and 2) the potassium secretory process is stimulated by aldosterone, is not inhibited by amiloride, and probably is electrogenic.

1983 ◽  
Vol 245 (5) ◽  
pp. G668-G675 ◽  
Author(s):  
E. S. Foster ◽  
T. W. Zimmerman ◽  
J. P. Hayslett ◽  
H. J. Binder

To determine the effect of corticosteroids on active transport processes, unidirectional fluxes of 22Na, 36Cl, and 42K were measured under short-circuit conditions across isolated stripped distal colonic mucosa of the rat in control, secondary hyperaldosterone, and dexamethasone-treated animals. In controls net sodium and chloride fluxes (JNanet and JClnet) and short-circuit current (Isc) were 6.6 +/- 2.2, 7.6 +/- 1.6, and 1.3 +/- 0.2 mu eq X h-1 X cm-2, respectively. Although aldosterone increased Isc to 7.3 +/- 0.5 mu eq X h-1 X cm-2, JNanet (6.9 +/- 0.7 mu eq X h-1 X cm-2) was not altered and JClnet was reduced to 0 compared with controls. Dexamethasone also stimulated Isc but did not inhibit JClnet. In Cl-free Ringer both aldosterone and dexamethasone produced significant and equal increases in JNanet and Isc. Theophylline abolished JNanet in control animals but not in the aldosterone group. Aldosterone reversed net potassium absorption (0.58 +/- 0.11 mu eq X h-1 X cm-2) to net potassium secretion (-0.94 +/- 0.08 mu eq X h-1 X cm-2). Dexamethasone reduced net potassium movement to 0 (-0.04 +/- 0.12 mu eq X h-1 X cm-2). These studies demonstrate that 1) corticosteroids stimulate electrogenic sodium absorption and 2) aldosterone, but not dexamethasone, inhibits neutral NaCl absorption and stimulates active potassium secretion. The effects of mineralocorticoids and glucocorticoids on electrolyte transport are not identical and may be mediated by separate and distinct mechanisms.


1993 ◽  
Vol 265 (1) ◽  
pp. C166-C170 ◽  
Author(s):  
H. Tamai ◽  
J. F. Kachur ◽  
M. B. Grisham ◽  
M. W. Musch ◽  
E. B. Chang ◽  
...  

The granulocyte-derived oxidant, monochloramine (NH2Cl), is known to stimulate chloride ion secretion in rat distal colonic mucosa mounted in Ussing chambers, through mechanisms that are sensitive and insensitive to tetrodotoxin (TTX). The possible role of intracellular thiols, in the mechanism of action of NH2Cl as a secretagogue, was evaluated with the thiol-oxidizing agent diamide and by measuring tissue sulfhydryl levels in response to NH2Cl. Serosal exposure to the antioxidant glutathione (0.25 mM), 5 min before NH2Cl (50 microM) addition, decreased the maximal effect of 50 microM NH2Cl on short-circuit current (Isc). The NH2Cl-stimulated increase in Isc was not affected by mucosal amiloride (5 microM). Pretreatment with 0.1 mM diamide shortened the lag period before the increase in Isc in response to NH2Cl, but it did not affect the maximal increase in Isc. Although TTX (0.5 microM) increased the lag time for achievement of the maximal Isc response to NH2Cl, the neurotoxin did not inhibit the effect of diamide, suggesting that diamide acts primarily on the nonneural component of NH2Cl-stimulated secretion. Incubation of colonic mucosa with NH2Cl, with or without diamide, decreased cellular acid-soluble sulfhydryl concentrations. Taken together, the results support a role for epithelial cell thiols in NH2Cl-stimulated electrolyte secretion by the rat colon.


1982 ◽  
Vol 242 (1) ◽  
pp. C81-C86 ◽  
Author(s):  
R. McCabe ◽  
H. J. Cooke ◽  
L. P. Sullivan

Unidirectional mucosal-to-serosal (Jm leads to s) and serosal-to-mucosal (Js leads to m) fluxes of potassium and sodium were determined simultaneously on paired sections of descending colon from the same rabbit under short-circuit conditions. In 13-16 pairs of tissues, net potassium secretion and sodium absorption averaged 0.49 +/- 0.08 and 4.0 +/- 0.8 mueq.cm-2.h-1, respectively. Short-circuit current (Jsc) averaged 3.7 +/- 0.4 mueq.cm-2.h-1 and was approximately equal to the algebraic sum of net potassium and sodium fluxes. Treatment of both sides of the colon with 10(-4) M ouabain reduced the Jsc and transmural potential difference to near zero. Ouabain abolished net potassium secretion by reducing JKs leads to m and abolished net sodium absorption by inhibiting JNam leads to s. In the presence of ouabain, net potassium absorption averaging 0.15 +/- 0.07 mueq.cm-2.h-1 (n = 11) was observed. In the presence of 10(-3) M 2,4-dinitrophenol, both net potassium and net sodium fluxes were abolished, primarily as a result of a reduction in JKs leads to m and JNam leads to s without altering JKm leads to s and JNas leads to m. These results suggest that the rabbit descending colon has the capacity to secrete and possibly to absorb potassium by active mechanisms requiring metabolic energy. Comparison of potassium and sodium fluxes suggest that the paracellular pathway in the rabbit colon is not potassium selective.


2006 ◽  
Vol 291 (4) ◽  
pp. C636-C648 ◽  
Author(s):  
Susan Troutman Halm ◽  
Tianjiang Liao ◽  
Dan R. Halm

Secretion of Cl− and K+ in the colonic epithelium operates through a cellular mechanism requiring K+ channels in the basolateral and apical membranes. Transepithelial current [short-circuit current ( Isc)] and conductance ( Gt) were measured for isolated distal colonic mucosa during secretory activation by epinephrine (Epi) or PGE2 and synergistically by PGE2 and carbachol (PGE2 + CCh). TRAM-34 at 0.5 μM, an inhibitor of KCa3.1 (IK, Kcnn4) K+ channels (H. Wulff, M. J. Miller, W. Hänsel, S. Grissmer, M. D. Cahalan, and K. G. Chandy. Proc Natl Acad Sci USA 97: 8151–8156, 2000), did not alter secretory Isc or Gt in guinea pig or rat colon. The presence of KCa3.1 in the mucosa was confirmed by immunoblot and immunofluorescence detection. At 100 μM, TRAM-34 inhibited Isc and Gt activated by Epi (∼4%), PGE2 (∼30%) and PGE2 + CCh (∼60%). The IC50 of 4.0 μM implicated involvement of K+ channels other than KCa3.1. The secretory responses augmented by the K+ channel opener 1-EBIO were inhibited only at a high concentration of TRAM-34, suggesting further that KCa3.1 was not involved. Sensitivity of the synergistic response (PGE2 + CCh) to a high concentration TRAM-34 supported a requirement for multiple K+ conductive pathways in secretion. Clofilium (100 μM), a quaternary ammonium, inhibited Cl− secretory Isc and Gt activated by PGE2 (∼20%) but not K+ secretion activated by Epi. Thus Cl− secretion activated by physiological secretagogues occurred without apparent activity of KCa3.1 channels but was dependent on other types of K+ channels sensitive to high concentrations of TRAM-34 and/or clofilium.


1986 ◽  
Vol 251 (2) ◽  
pp. G249-G252 ◽  
Author(s):  
M. E. Budinger ◽  
E. S. Foster ◽  
J. P. Hayslett ◽  
H. J. Binder

Increased dietary potassium ("potassium loading") induces several adaptive changes in colonic function, including increased potential-dependent potassium secretion, active potassium secretion, and Na-K-ATPase activity, but does not alter net sodium absorption in vivo. To establish whether potassium loading stimulates active sodium transport, unidirectional, net sodium, and chloride fluxes were determined under voltage-clamp conditions across isolated rat distal colonic mucosa. In normal animals net sodium flux (JNanet), net chloride flux (JClnet) and short-circuit current (Isc) were 6.1 +/- 1.1, 8.4 +/- 1.0, and 0.7 +/- 0.1 mu eq X h-1. cm-2, respectively; potassium loading significantly increased JNanet and Isc by 4.9 +/- 1.4 and 3.5 +/- 0.7 mu eq X h-1 X cm-2, respectively, without changing JClnet. Amiloride (0.1 mM) inhibited the increases in JNanet and Isc produced by potassium loading. In Cl-free Ringer solution in normal animals JNanet was reduced to 0.6 +/- 0.3 mu eq X h-1 X cm-2. Potassium loading produced identical increases in JNanet and Isc, which were also completely inhibited by 0.1 mM amiloride. These studies establish that potassium loading induces amiloride-sensitive electrogenic sodium absorption without affecting electroneutral sodium-chloride absorption.


1980 ◽  
Vol 238 (3) ◽  
pp. G208-G212
Author(s):  
Y. H. Tai ◽  
R. A. Decker

The short-circuit current (Isc), potential difference (PD), tissue conductance (Gt), and Na and Cl fluxes in the short-circuit state across rat ileum were studied in Ussing chambers using a variety of bathing solutions. In Ringer solution, Isc exceeded net Na absorption and net Cl secretion occurred. Addition of 10 mM glucose increased Isc, PD, Gt, and net Na absorption, which accounts for 70% of the increase in Isc. Removal of HCO3 from Ringer solution did not alter any parameters but increased net Cl secretion due to a decrease in mucosal-to-serosal Cl flux. Reduction by 50% of the [Cl] in HCO3-free solution decreased the net Cl secretion to the level in Ringer solution and increased net Na absorption. Removal of Cl decreased Isc to the value of the net Na absorption and decreased the Na influx across the mucosal membrane by 39%. Isc and PD were near zero and net Cl absorption was observed in a Na-free solution. These results are consistent with the transport mechanism that consists of 1) an electrogenic Na absorptive process that accounts for the Isc, 2) a neutral NaCl-coupled secretory process, and 3) a system by which HCO3- secretion exchanges for Cl- absorption.


1986 ◽  
Vol 251 (5) ◽  
pp. G619-G626 ◽  
Author(s):  
E. S. Foster ◽  
G. I. Sandle ◽  
J. P. Hayslett ◽  
H. J. Binder

To determine the effect of variations in body stores of potassium on the rate of active potassium transport in the large intestine, unidirectional 42K fluxes were performed under short-circuit conditions across isolated distal colonic mucosa of control, dietary potassium-depleted and dietary potassium-loaded rats. Potassium depletion stimulated net potassium absorption (JK net) (0.87 +/- 0.19 vs. 0.49 +/- 0.04 mu eq X h-1 X cm-2, P less than 0.025) due to a 40% increase in mucosal-to-serosal potassium transport (JK m----s). In sodium-free Ringer solution JK net in the potassium-depleted group was also significantly greater than in controls (1.93 +/- 0.26 vs. 1.01 +/- 0.11 mu eq X h-1 X cm-2, P less than 0.005). In contrast, in chloride-free Ringer solution JK net was identical in the control and potassium-depleted groups (0.39 +/- 0.05 vs. 0.46 +/- 0.07 mu eq X h-1 X cm-2, P = NS). Potassium loading reversed net potassium absorption to net potassium secretion (-0.76 +/- 0.08 mu eq X h-1 X cm-2, P less than 0.001) as the result of a decrease in JK m----s and an increase in serosal-to-mucosal potassium transport (JK s----m). Net potassium secretion was abolished in the absence of either sodium or chloride from the bathing solution but not by mucosal amiloride. In sodium-free Ringer solution JK net was similar in control and potassium-loaded groups, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)


1985 ◽  
Vol 59 (4) ◽  
pp. 1191-1195 ◽  
Author(s):  
F. J. Al-Bazzaz ◽  
T. Jayaram

Calcium (Ca) affects many cellular functions of the respiratory tract mucosa and might alter the viscoelastic properties of mucus. To evaluate Ca homeostasis in a respiratory epithelium we investigated transport of Ca by the canine tracheal mucosa. Mucosal tissues were mounted in Ussing-type chambers and bathed with Krebs-Henseleit solution at 37 degrees C. Unidirectional fluxes of 45Ca were determined in tissues that were matched by conductance and short-circuit current (SCC). Under short-circuit conditions there was a significant net Ca secretion of 1.82 +/- 0.36 neq . cm-2 . h-1 (mean +/- SE). Under open-circuit conditions, where the spontaneous transepithelial potential difference could attract Ca toward the lumen, net Ca secretion increased significantly to 4.40 +/- 1.14 compared with 1.54 +/- 1.17 neq . cm-2 . h-1 when the preparation was short-circuited. Addition of a metabolic inhibitor, 2,4-dinitrophenol (2 mM in the mucosal bath), decreased tissue conductance and SCC and slightly decreased the unidirectional movement of Ca from submucosa to lumen. Submucosal epinephrine (10 microM) significantly enhanced Ca secretion by 2.0 +/- 0.63 neq . cm-2 . h-1. Submucosal ouabain (0.1 mM) failed to inhibit Ca secretion. The data suggest that canine tracheal mucosa secretes Ca; this secretory process is augmented by epinephrine or by the presence of a transepithelial potential difference as found under in vivo conditions.


1968 ◽  
Vol 49 (1) ◽  
pp. 185-193
Author(s):  
MALCOLM S. GORDON ◽  
VANCE A. TUCKER

1. Total rates of urea loss from adult euryhaline crab-eating frogs (Rana cancrivora) adapted to various environmental salinities between fresh water and 80 % sea water increase as salinity increases above 40% sea water. Oxygen consumption is constant in rate in all salinities studied. 2. The presence of urea in the Ringer solution bathing isolated pieces of skin of frogs adapted to 60% sea water increases both the electrical potential and the inwardly directed short-circuit current across the skin. 3. In skeletal muscle cells addition of intracellular solutes maintains tissue hydration in the face of large increases in plasma osmotic concentration in high-salinity media. Changes in the intracellular urea and free amino acid concentrations are primarily responsible for increases in intracellular osmotic concentration. 4. Some implications of these observations are discussed and comparisons made with the euryhaline green toad, Bufo viridis.


Sign in / Sign up

Export Citation Format

Share Document