paracellular pathway
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Omar Y. Mady ◽  
Adam A. Al-Shoubki ◽  
Ahmed A. Donia ◽  
Waseem Qasim

AbstractPenetration enhancement of metformin hydrochloride via its molecular dispersion in sorbitan monostearate microparticles is reported. This represents basic philosophy to maximize its entrapment for maximum penetration effect. Drug dispersion in sorbitan monostearate with different theoretical drug contents (TDC) were prepared. Products showed excellent micromeritics and actual drug content (ADC) increased by increasing TDC. The partition coefficient of the drug products showed huge improvement. This indicates the drug entrapped in the polar part of sorbitan monostearate as a special image which effects on the drug release. The drug permeation profiles from the different products are overlapped with nearly equal permeation parameters. The permeation results suggested the main driving force for improving the drug paracellular pathway is its dispersion in sorbitan monostearate and is independent of ADC. Pharmacodynamic of the products showed a significant improvement than the drug alone at p ˂ 0.05. ANOVA test indicated the insignificant pharmacodynamic difference between the low, middle, and high ADC of the products. An excellent correlation founded between the drug permeation and pharmacodynamic precents. Drug permeation driving force via the paracellular pathway is its entrapment in sorbitan monostearate and independent on ADC. The technique is simple and the products had excellent micromeritics.


2021 ◽  
pp. 1-9
Author(s):  
Jerry Yee ◽  
David Rosenbaum ◽  
Jeffrey W. Jacobs ◽  
Stuart M. Sprague

<b><i>Background:</i></b> Chronic kidney disease (CKD) affects approximately 15% of adults in the USA. As CKD progresses, urinary phosphate excretion decreases and results in phosphate retention and, eventually, hyperphosphatemia. As hyperphosphatemia is associated with numerous adverse outcomes, including increased cardiovascular mortality, reduction in phosphorus concentrations is a guideline-recommended, established clinical practice. Dietary phosphate restriction, dialysis, and phosphate binders are currently the only options for phosphate management. However, many patients with hyperphosphatemia have phosphorus concentrations &#x3e;5.5 mg/dL, despite treatment. <b><i>Summary:</i></b> This review pre­sents recent advances in the understanding of intestinal phosphate absorption and therapeutic implications. Dietary phosphate is absorbed in the intestine through two distinct pathways, paracellular absorption and transcellular transport. Recent evidence indicates that the paracellular route accounts for 65–80% of total phosphate absorbed. Thus, the paracellular pathway is the dominant mechanism of phosphate absorption. Tenapanor is a first-in-class, non-phosphate binder that inhibits the sodium-hydrogen exchanger 3 or solute carrier family 9 member 3 (SLC9A3) encoded by the SLC9A3 gene, and blocks paracellular phosphate absorption. <b><i>Key Messages:</i></b> Targeted inhibition of sodium-hydrogen exchanger 3 effectively reduces paracellular permeability of phosphate. Novel therapies that target the paracellular pathway may improve phosphate control in chronic kidney disease.


2021 ◽  
Author(s):  
Omar Y. Mady ◽  
Adam A. Al-Shoubki ◽  
Ahmed A. Donia ◽  
Waseem Qasim

Abstract Background: Penetration enhancement of metformin hydrochloride via its molecular dispersion in sorbitan monostearate microparticles is reported. Metformin dispersion in sorbitan monostearate as a carrier was thought to be the basic philosophy to maximize its entrapment in the matrix for maximum penetration effect.Methods: Drug dispersion in sorbitan monostearate with different theoretical drug contents (TDC) were prepared. Results: All products showed excellent micromeritics and actual drug content (ADC) increased by increasing TDC. These two features are essential for industry concerning processing and cost. The partition coefficient of the drug products showed huge improvement. This indicates the drug entrapment should be in the polar part of sorbitan monostearate as a special image. The drug entrapment process was also reflected in the drug release process due to the insolubility of the matrix in the dissolution medium. The drug permeation profiles from the different drug-sorbitan monostearate products are overlapped and its permeation parameters (permeation coefficient, total drug permeation percent & drug absorption enhancement percent) are nearly equal. The results of the permeation study by using modified non-everted sac suggested the main driving force for 11 improving the drug paracellular pathway is its dispersion in sorbitan monostearate (special image) and is independent of ADC. Pharmacodynamic of the drug products showed a significant improvement than that from the drug alone at p ˂ 0.05. ANOVA test indicated the insignificant pharmacodynamic difference between the low, middle, and high ADC of the products. There is an excellent point-to-point correlation between the drug permeation percent and the drug pharmacodynamic percent. The total amount of the drug permeation percent is equal to the mean of the total drug pharmacodynamic percent. Conclusion: The results concluded that the drug permeation driving force via the paracellular pathway is its entrapment in sorbitan monostearate as a special image and it does not depend on ADC. This entrapment mechanism improved the drug pharmacodynamic effect. The technique is simple and the products are easy to process due to having an excellent micromeritics property.


2021 ◽  
pp. 1-10
Author(s):  
Peter A. McCullough

<b><i>Background:</i></b> Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD) on dialysis. Mortality rates are still unacceptably high even though they have fallen in the past 2 decades. Hyperphosphatemia (elevated serum phosphate levels) is seen in almost all patients with advanced CKD and is by far the largest remaining modifiable contributor to CKD mortality. <b><i>Summary:</i></b> Phosphate retention drives multiple physiological mechanisms linked to increased risk of CVD. Fibroblast growth factor 23 and parathyroid hormone (PTH) levels, both of which have been suggested to have direct pathogenic CV effects, increase in response to phosphate retention. Phosphate, calcium, and PTH levels are linked in a progressively worsening cycle. Maladaptive upregulation of phosphate absorption is also likely to occur further exacerbating hyperphosphatemia. Even higher phosphate levels within the normal range may be a risk factor for vascular calcification and, thus, CV morbidity and mortality. A greater degree of phosphate control is important to reduce the risk of CV morbidity and mortality. Improved phosphate control and regular monitoring of phosphate levels are guideline-recommended, established clinical practices. There are several challenges with the current phosphate management approaches in patients with CKD on dialysis. Dietary restriction of phosphate and thrice-weekly dialysis alone are insufficient/unreliable to reduce phosphate to &#x3c;5.5 mg/dL. Even with the addition of phosphate binders, the only pharmacological treatment currently indicated for hyperphosphatemia, the majority of patients are unable to achieve and maintain phosphate levels &#x3c;5.5 mg/dL (or more normal levels) [PhosLo® gelcaps (calcium acetate): 667 mg (prescribing information), 2011, VELPHORO®: (Sucroferric oxyhydroxide) (prescribing information), 2013, FOSRENAL®: (Lanthanum carbonate) (prescribing information), 2016, AURYXIA®: (Ferric citrate) tablets (prescribing information), 2017, RENVELA®: (Sevelamer carbonate) (prescribing information), 2020, RealWorld dynamix. Dialysis US: Spherix Global Insights, 2019]. Phosphate binders do not target the primary pathway of phosphate absorption (paracellular), have limited binding capacity, and bind nonspecifically [PhosLo® gelcaps (calcium acetate): 667 mg (prescribing information). 2013, VELPHORO®: (Sucroferric oxyhydroxide) (prescribing information), 2013, FOSRENAL®: (Lanthanum carbonate) (prescribing information), 2016, AURYXIA®: (Ferric citrate) tablets (prescribing information), 2017, RENVELA®: (Sevelamer carbonate) (prescribing information) 2020]. <b><i>Key Messages:</i></b> Despite current phosphate management strategies, most patients on dialysis are unable to consistently achieve target phosphate levels, indicating a need for therapeutic innovations [RealWorld dynamix. Dialysis US: Spherix Global Insights, 2019]. Given a growing evidence base that the dominant mechanism of phosphate absorption is the intestinal paracellular pathway, new therapies are investigating ways to reduce phosphate levels by blocking absorption through the paracellular pathway.


2021 ◽  
Author(s):  
Michael Maes ◽  
Laura Andres ◽  
Aristo Vojdani ◽  
Sunee Sirivichayakul ◽  
Decio S Barbosa ◽  
...  

Background: A meaningful part of schizophrenia patients suffer from physiosomatic symptoms (formerly named psychosomatic) which are reminiscent of chronic fatigue syndrome and fibromyalgia (FF) and are associated with signs of immune activation and increased levels of tryptophan catabolites (TRYCATs). Aims: To examine whether FF symptoms in schizophrenia are associated with breakdown of the paracellular pathway, zonulin, lowered natural IgM responses to oxidative specific epitopes (OSEs); and whether FF symptoms belong to the behavioral-cognitive-physical-psychosocial-(BCPS)-worsening index consisting of indices of a general cognitive decline (G-CoDe), symptomatome of schizophrenia, and quality of life (QoL)-phenomenome. Methods: FF symptoms were assessed using the Fibromyalgia and Chronic Fatigue Rating scale in 80 schizophrenia patients and 40 healthy controls and serum cytokines/chemokines, IgA levels to TRYCATs, IgM to OSEs, zonulin and transcellular/paracellular (TRANS/PARA) molecules were assayed using ELISA methods. Results: A large part (42.3%) of the variance in the total FF score was explained by the regression on the PARA/TRANS ratio, pro-inflammatory cytokines, IgM to zonulin, IgA to TRYCATs (all positively) and IgM to OSEs (inversely). There were highly significant correlations between the total FF score and G-CoDe, symtopmatome, QoL phenomenome and BCPS-worsening score. FF symptoms belong to a common core shared by G-CoDe, symtopmatome, and QoL phenomenome. Discussion: The physio-somatic symptoms of schizophrenia are driven by various pathways including increased zonulin, breakdown of the paracellular tight-junctions pathway, immune activation with induction of the TRYCAT pathway, and consequent neurotoxicity. It is concluded that FF symptoms are part of the phenome of schizophrenia and BCPS-worsening as well.


Author(s):  
Michael Maes ◽  
Laura Andrés-Rodríguez ◽  
Aristo Vojdani ◽  
Sunee Sirivichayakul ◽  
Décio Barbosa ◽  
...  

Background: A meaningful part of schizophrenia patients suffer from physiosomatic symptoms (formerly named psychosomatic) which are reminiscent of chronic fatigue syndrome and fibromyalgia (FF) and are associated with signs of immune activation and increased levels of tryptophan catabolites (TRYCATs). Aims: To examine whether FF symptoms in schizophrenia are associated with breakdown of the paracellular pathway, zonulin, lowered natural IgM responses to oxidative specific epitopes (OSEs); and whether FF symptoms belong to the behavioral-cognitive-physical-psychosocial-(BCPS)-worsening index consisting of indices of a general cognitive decline (G-CoDe), symptomatome of schizophrenia, and quality of life (QoL)-phenomenome. Methods: FF symptoms were assessed using the Fibromyalgia and Chronic Fatigue Rating scale in 80 schizophrenia patients and 40 healthy controls and serum cytokines/chemokines, IgA levels to TRYCATs, IgM to OSEs, zonulin and transcellular/paracellular (TRANS/PARA) molecules were assayed using ELISA methods. Results: A large part (42.3%) of the variance in the total FF score was explained by the regression on the PARA/TRANS ratio, pro-inflammatory cytokines, IgM to zonulin, IgA to TRYCATs (all positively) and IgM to OSEs (inversely). There were highly significant correlations between the total FF score and G-CoDe, symtopmatome, QoL phenomenome and BCPS-worsening score. FF symptoms belong to a common core shared by G-CoDe, symtopmatome, and QoL phenomenome. Discussion: The physio-somatic symptoms of schizophrenia are driven by various pathways including increased zonulin, breakdown of the paracellular tight-junctions pathway, immune activation with induction of the TRYCAT pathway, and consequent neurotoxicity. It is concluded that FF symptoms are part of the phenome of schizophrenia and BCPS-worsening as well.


Author(s):  
Patrícia G Ferreira ◽  
Wouter H van Megen ◽  
Rebecca Siu Ga Tan ◽  
Christy H.L. Lee ◽  
Per Svenningsen ◽  
...  

The kidneys play a crucial role in maintaining calcium (Ca2+) and magnesium (Mg2+) homeostasis by regulating these minerals' reabsorption. In the thick ascending limb of Henle's loop (TAL), Ca2+ and Mg2+ are reabsorbed through the tight junctions by a shared paracellular pathway formed by claudin-16 and claudin-19. Hypercalcemia activates the Ca2+-sensing receptor (CaSR) in the TAL, causing upregulation of the pore-blocking claudin-14 (CLDN14) that reduces Ca2+ and Mg2+ reabsorption from this segment. Additionally, a high Mg2+ diet is known to increase both urinary Mg2+ and Ca2+ excretion. Since Mg2+ may also activate the CaSR, we aimed to investigate whether CaSR-dependent increases in CLDN14 expression also regulate urinary Mg2+ excretion in response to hypermagnesemia. Here we show that a Mg2+-enriched diet increased urinary Mg2+ and Ca2+ excretion in mice, however this occurred without detectable changes in renal CLDN14 expression. The administration of a high Mg2+ diet to Cldn14-/- mice did not cause more pronounced hypermagnesemia nor significantly alter urinary Mg2+ excretion. Finally, in vitro evaluation of CaSR-driven Cldn14 promoter activity in response to increasing Mg2+ concentrations revealed that Cldn14 expression only increases at supraphysiological extracellular Mg2+ levels. Together, these results suggest that CLDN14 is not involved in regulating extracellular Mg2+ balance following high dietary Mg2+ intake.


2020 ◽  
Author(s):  
Hui Yang ◽  
Zhishu Tang ◽  
Jiangxue Cheng ◽  
Jing Wang ◽  
Junbo Zou ◽  
...  

Abstract Background: Previous studies have shown that Malus hupehensis (Pamp.) Rehd. extracts have anti-oxidant, anti-aging and other effects, its bioavailability is low, however its absorption mechanism is still unclear. To investigate the absorption properties of hyperin, quercitrin, phloridzin, quercetin, and phloretin in total flavonoids of Malus hupehensis (Pamp.) Rehd. Extracts. Methods: In situ single-pass intestinal perfusion model and in vitro Caco-2 cell model were used in this study. The effects of concentration of the extract, administration time, temperature, different intestinal segments, paracellular pathway were analyzed, and the effect of efflux inhibitors, such as the P-gp inhibitor verapamil, the multidrug resistance protein2 (MRP2) inhibitor indomethacin, the breast cancer resistance protein (BCRP) inhibitor reserpine, on the transport were evaluated. As well as EDTA, a tight junction regulator, was studied.Results: The results indicated that the jejunum was the optimal absorption intestine segment of quercitrin, phloridzin, and phloretin. And the greatest absorption intestine segment of quercetin was ileum. Furthermore, it was found that the absorption mechanisms of phloridzin in extract was involved in passive diffusion and the mediation of P-gp and MRP2 should not be neglected. The absorption mechanisms of quercetin and phloretin from extract involved active transport and were accompanied by the participation of efflux transporters, such as P-gp, MRP2 and BCRP. And also the paracellular pathway was involved in hyperin and quercitrin. Conclusion: The absorption mechanisms of five flavonoids from Malus hupehensis (Pamp.) Rehd. extract are related to the concentration of the drugs, intestinal segments, and efflux protein.


Sign in / Sign up

Export Citation Format

Share Document