Early effects of vitamin D metabolites on phosphate fluxes in isolated rat enterocytes

1985 ◽  
Vol 248 (1) ◽  
pp. G40-G45 ◽  
Author(s):  
G. Karsenty ◽  
B. Lacour ◽  
A. Ulmann ◽  
E. Pierandrei ◽  
T. Drueke

The present studies were designed to explore the possibility that, in addition to its well-known steroidlike action, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active vitamin D3 metabolite, modulates inorganic phosphate (Pi) transport across the intestinal mucosa through more rapid membrane effects. Enterocytes were mechanically isolated from the duodenojejunum of vitamin D-replete rats. In this model enterocyte Pi uptake was a temperature-dependent as well as a Na+-dependent process. In vitro addition of 1,25(OH)2D3 (1 pM) led to a significant increase in Na+-dependent initial Pi uptake velocity (iVpi) within 20 min (P less than 0.001). No effect was seen for shorter incubation times (5 and 15 min). Incubation of the cells with cycloheximide did not inhibit the hormone-mediated increase of iVpi. 25-Hydroxyvitamin D3 significantly increased iVPi (P less than 0.05) at a concentration of 1 nM but not 1 pM. Vitamin D3 at a concentration of 1 microM had no effect on iVPi. Enterocyte Pi efflux rate constant was not modified by the presence of 1,25(OH)2D3(1pM). Thus, the early in vitro effect of 1,25(OH)2D3 on Pi uptake by isolated enterocytes suggests a nongenomic action of the hormone, possibly by modifying the lipid structure of the plasma membrane.

2020 ◽  
Vol 21 (2) ◽  
pp. 470 ◽  
Author(s):  
Bashar Al-Zohily ◽  
Asma Al-Menhali ◽  
Salah Gariballa ◽  
Afrozul Haq ◽  
Iltaf Shah

In this review, we discuss the sources, formation, metabolism, function, biological activity, and potency of C3-epimers (epimers of vitamin D). We also determine the role of epimerase in vitamin D-binding protein (DBP) and vitamin D receptors (VDR) according to different subcellular localizations. The importance of C3 epimerization and the metabolic pathway of vitamin D at the hydroxyl group have recently been recognized. Here, the hydroxyl group at the C3 position is orientated differently from the alpha to beta orientation in space. However, the details of this epimerization pathway are not yet clearly understood. Even the gene encoding for the enzyme involved in epimerization has not yet been identified. Many published research articles have illustrated the biological activity of C3 epimeric metabolites using an in vitro model, but the studies on in vivo models are substantially inadequate. The metabolic stability of 3-epi-1α,25(OH)2D3 has been demonstrated to be higher than its primary metabolites. 3-epi-1 alpha, 25 dihydroxyvitamin D3 (3-epi-1α,25(OH)2D3) is thought to have fewer calcemic effects than non-epimeric forms of vitamin D. Some researchers have observed a larger proportion of total vitamin D as C3-epimers in infants than in adults. Insufficient levels of vitamin D were found in mothers and their newborns when the epimers were not included in the measurement of vitamin D. Oral supplementation of vitamin D has also been found to potentially cause increased production of epimers in mice but not humans. Moreover, routine vitamin D blood tests for healthy adults will not be significantly affected by epimeric interference using LC–MS/MS assays. Recent genetic models also show that the genetic determinants and the potential factors of C3-epimers differ from those of non-C3-epimers.Most commercial immunoassays techniques can lead to inaccurate vitamin D results due to epimeric interference, especially in infants and pregnant women. It is also known that the LC–MS/MS technique can chromatographically separate epimeric and isobaric interference and detect vitamin D metabolites sensitively and accurately. Unfortunately, many labs around the world do not take into account the interference caused by epimers. In this review, various methods and techniques for the analysis of C3-epimers are also discussed. The authors believe that C3-epimers may have an important role to play in clinical research, and further research is warranted.


1983 ◽  
Vol 245 (4) ◽  
pp. E359-E364 ◽  
Author(s):  
G. S. Reddy ◽  
G. Jones ◽  
S. W. Kooh ◽  
D. Fraser ◽  
H. F. DeLuca

Previously we have shown that the isolated perfused kidney from vitamin D-deficient rats converts [3H]25(OH)D3 into [3H]1 alpha,25(OH)2D3. When certain vitamin D metabolites were added to perfusate the same kidney began to synthesize [3H]24R,25(OH)2D3. In this study we investigated the structural requirements of the vitamin D molecule necessary to stimulate synthesis of [3H]24R,25(OH)2D3 in a 1-hydroxylating kidney. Kidneys were perfused with tracer [3H]25(OH)D3 (450 pM) alone and in the presence of a variety of hydroxylated metabolites and fluorinated analogues of vitamin D3 at concentrations of 450 pM to 25 microM. Tracer [3H]25(OH)D3 alone resulted in synthesis of only [3H]1 alpha,25(OH)2D3 during the 6-h perfusion period. 25-Hydroxylated metabolites [25(OH)D3, 25 nM; 1 alpha,25(OH)2D3, 25 nM; 24R,25(OH)2D3, 25 nM; 24(F)2,25(OH)D3, 50 nM] stimulated [3H]24R,25(OH)2D3 production at 2 h of perfusion. On the other hand, analogues without the 25-hydroxyl group [D3; 1 alpha(OH)D3; 25(F)D3; 1 alpha(OH),25(F)D3; 1 alpha(F)D3; 1 beta(F)D3]; did not stimulate [3H]24R,25(OH)2D3 synthesis. We conclude that the 25-hydroxyl group is an essential determinant of 24-hydroxylation.


1983 ◽  
Vol 244 (6) ◽  
pp. F674-F678 ◽  
Author(s):  
M. M. Friedlaender ◽  
Z. Kornberg ◽  
H. Wald ◽  
M. M. Popovtzer

The effects of 1 alpha (OH)vitamin D3 [1 alpha (OH)D3] and 24,25(OH)2vitamin D3 [24,25(OH)2D3] on the phosphaturic action of parathyroid hormone (PTH) were studied in two groups of parathyroidectomized (PTX) rats. In group 1, PTX PTH-infused rats received intravenous 1 alpha (OH)D3, and in group 2, PTX PTH-infused rats received intravenous 24,25(OH)2D3. PTX PTH-infused rats served as controls. The effects of both vitamin D metabolites on renal PTH-activated adenylate cyclase (AC) were studied in vitro. In group 1, PTH increased fractional excretion of phosphate (CP/CIn) from 0.045 +/- 0.012 (+/- SE) to 0.263 +/- 0.011 (P less than 0.005). 1 alpha (OH)D3 failed to influence this response. In group 2, PTH increased CP/CIn from 0.055 +/- 0.008 to 0.289 +/- 0.027 (P less than 0.005). 24,25(OH)2D3 reduced the PTH-induced rise in CP/CIn from 0.289 +/- 0.027 to 0.192 +/- 0.021 (P less than 0.01) and decreased the urinary excretion of adenosine 3',5'-cyclic monophosphate. In vitro, 24,25(OH)2D3 blunted the PTH-activated AC, whereas 1 alpha (OH)D3 had no effect. These results show that 24,25(OH)D3, similar to two other 25(OH) metabolites of vitamin D-25(OH)vitamin D3 and 1,25(OH)2vitamin D3-suppresses the phosphaturic action of PTH, whereas 1 alpha(OH)D3, which is devoid of a 25(OH) group, lacks this effect. This suggests that a 25(OH) group is a prerequisite for the antiphosphaturic effect of vitamin D, whereas the 1 alpha (OH) group is not essential for this action.


1985 ◽  
Vol 69 (5) ◽  
pp. 561-570 ◽  
Author(s):  
E. Barbara Mawer ◽  
H. J. Klass ◽  
T. W. Warnes ◽  
Jacqueline L. Berry

1. The metabolism of isotopically labelled vitamin D2 and D3 has been investigated in eight patients with primary biliary cirrhosis and in five controls. The concentration of labelled vitamin D2 was lower than that of vitamin D3 in serum of patients with primary biliary cirrhosis on days 1 and 2 after intravenous injection (P < 0.005 and P < 0.05, respectively) but no difference was seen in controls. 2. Similar amounts of labelled 25-hydroxyvitamin D2 and D3 were seen in serum of the control group; the same pattern was observed in the primary biliary cirrhosis group, and no significant differences were observed between the two groups. 3. In both control and primary biliary cirrhosis groups, the serum concentration of labelled 24,25-dihydroxyvitamin D2 exceeded that of 24,25-dihydroxyvitamin D3 (significant for controls on day 2, P < 0.02) but concentrations in the two groups were not different. 4. Concentrations of labelled 25,26-dihydroxyvitamin D3 were significantly higher than those of 25,26-dihydroxyvitamin D2 in the primary biliary cirrhosis group at all times and in the control group on days 2 and 3. Both 25,26-dihydroxyvitamin D2 and D3 were higher in the serum of patients with primary biliary cirrhosis than in controls (significant on day 1, P < 0.05). 5. Urinary excretion over days 0–3 of radioactivity from both vitamins D2 and D3 was significantly higher in the primary biliary cirrhosis group than in controls: 12.03 vs 1.80% for vitamin D2 and 8.98 vs 1.76% for vitamin D3(P < 0.005). Vitamin D2-derived urinary radioactivity in primary biliary cirrhosis correlated strongly with serum bilirubin (P = 0.005). 6. The metabolism of labelled vitamin D3 was studied in seven patients with alcoholic liver disease, three of whom showed low serum concentrations of labelled 25-hydroxyvitamin D3 suggesting impaired hepatic synthesis. The 25-hydroxylation response was quantified as the relative index of 25-hydroxylation and was significantly related to two other indices of liver function. It is concluded that impaired 25-hydroxylation of vitamin D may occur in alcoholic liver disease and results from hepatocellular dysfunction. 7. Less than the predicted amounts of 1,25-dihydroxyvitamin D3 were produced in four of the seven patients with alcoholic liver disease; this defect may be attributable in part to decreased precursor 25-hydroxyvitamin D and to poor renal function.


1981 ◽  
Vol 241 (1) ◽  
pp. G49-G53
Author(s):  
N. Brautbar ◽  
B. S. Levine ◽  
M. W. Walling ◽  
J. W. Coburn

The intestinal absorption of calcium (Ca) has been shown to depend on vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary phosphorus (P) concentration. This study was designed to evaluate the role of dietary P independent of vitamin D3 or 1,25(OH)2D3. Vitamin D-deficient rats were studied during dietary P restriction and were compared with control groups raised on a normal-phosphorus diet (NP). Balance studies were sued. Net intestinal Ca absorption was significantly lower with dietary P restriction compared with the NP group. This malabsorption of Ca was corrected by the administration of either D3 for 1,25(OH)2D3, despite hypophosphatemia. Everted gut sacs showed a marked reduction in the uptake of 45Ca in the duodenum, jejunum, and ileum during dietary P restriction. We concluded that dietary P concentration plays a major role in intestinal Ca absorption in the vitamin D-deficient rats. These findings suggest an effect of the low-phosphate diet on the vitamin D-dependent, Ca-transport mechanism.


Sign in / Sign up

Export Citation Format

Share Document