Metabolism of vitamin D in patients with primary biliary cirrhosis and alcoholic liver disease

1985 ◽  
Vol 69 (5) ◽  
pp. 561-570 ◽  
Author(s):  
E. Barbara Mawer ◽  
H. J. Klass ◽  
T. W. Warnes ◽  
Jacqueline L. Berry

1. The metabolism of isotopically labelled vitamin D2 and D3 has been investigated in eight patients with primary biliary cirrhosis and in five controls. The concentration of labelled vitamin D2 was lower than that of vitamin D3 in serum of patients with primary biliary cirrhosis on days 1 and 2 after intravenous injection (P < 0.005 and P < 0.05, respectively) but no difference was seen in controls. 2. Similar amounts of labelled 25-hydroxyvitamin D2 and D3 were seen in serum of the control group; the same pattern was observed in the primary biliary cirrhosis group, and no significant differences were observed between the two groups. 3. In both control and primary biliary cirrhosis groups, the serum concentration of labelled 24,25-dihydroxyvitamin D2 exceeded that of 24,25-dihydroxyvitamin D3 (significant for controls on day 2, P < 0.02) but concentrations in the two groups were not different. 4. Concentrations of labelled 25,26-dihydroxyvitamin D3 were significantly higher than those of 25,26-dihydroxyvitamin D2 in the primary biliary cirrhosis group at all times and in the control group on days 2 and 3. Both 25,26-dihydroxyvitamin D2 and D3 were higher in the serum of patients with primary biliary cirrhosis than in controls (significant on day 1, P < 0.05). 5. Urinary excretion over days 0–3 of radioactivity from both vitamins D2 and D3 was significantly higher in the primary biliary cirrhosis group than in controls: 12.03 vs 1.80% for vitamin D2 and 8.98 vs 1.76% for vitamin D3(P < 0.005). Vitamin D2-derived urinary radioactivity in primary biliary cirrhosis correlated strongly with serum bilirubin (P = 0.005). 6. The metabolism of labelled vitamin D3 was studied in seven patients with alcoholic liver disease, three of whom showed low serum concentrations of labelled 25-hydroxyvitamin D3 suggesting impaired hepatic synthesis. The 25-hydroxylation response was quantified as the relative index of 25-hydroxylation and was significantly related to two other indices of liver function. It is concluded that impaired 25-hydroxylation of vitamin D may occur in alcoholic liver disease and results from hepatocellular dysfunction. 7. Less than the predicted amounts of 1,25-dihydroxyvitamin D3 were produced in four of the seven patients with alcoholic liver disease; this defect may be attributable in part to decreased precursor 25-hydroxyvitamin D and to poor renal function.

1983 ◽  
Vol 65 (4) ◽  
pp. 429-436 ◽  
Author(s):  
S. Dekel ◽  
R. Salama ◽  
S. Edelstein

1. One-day-old chicks were depleted of vitamin D. At 3 weeks their right tibiae, and those of a control group given vitamin D3, were fractured and pinned. After fracture the controls were kept on vitamin D3. Another group was left vitamin D-deficient. The remaining depleted chicks, divided into four groups, were given vitamin D3, 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or a combination of 24,25(OH)2D3 and 1,25(OH)2D3. 2. The callus obtained after 9 and 14 days was subjected to torsional stress. The callus of chicks given vitamin D continuously showed the greatest resistance, whereas that of vitamin D-deficient chicks showed the smallest resistance. Repletion with either vitamin D3 or its metabolites increased the strength of the callus. Repletion with the combination of 24,25(OH)2D3 and 1,25(OH)2D3 produced the most marked results, in that the callus was even stronger than that of chicks replete with vitamin D3. 3. It is concluded that 24,25(OH)2D3 is essential for bone formation in addition to the known active vitamin D metabolite 1,25(OH)2D3, and the possible clinical implications of these findings are discussed.


Hepatology ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 297-302 ◽  
Author(s):  
P. Kurki ◽  
A. Miettinen ◽  
M. Salaspuro ◽  
I. Virtanen ◽  
S. Stenman

2019 ◽  
Vol 104 (12) ◽  
pp. 5831-5839 ◽  
Author(s):  
Adrian R Martineau ◽  
Kenneth E Thummel ◽  
Zhican Wang ◽  
David A Jolliffe ◽  
Barbara J Boucher ◽  
...  

Abstract Context Vitamin D2 and vitamin D3 have been hypothesized to exert differential effects on vitamin D metabolism. Objective To compare the influence of administering vitamin D2 vs vitamin D3 on metabolism of vitamin D3. Methods We measured baseline and 4-month serum concentrations of vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3], 25-hydroxyvitamin D2, 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3], 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], and 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] in 52 adults randomized to receive a total of four oral bolus doses of 2.5 mg vitamin D2 (n = 28) or vitamin D3 (n = 24) over four months. Metabolite-to-parent compound ratios were calculated to estimate hydroxylase activity. Pairwise before vs after comparisons were made to evaluate effects of vitamin D2 and vitamin D3 on metabolism of vitamin D. Mean postsupplementation metabolite-to-parent ratios were then compared between groups. Results Vitamin D2 was less effective than vitamin D3 in elevating total serum 25(OH)D concentration. Vitamin D2 suppressed mean four-month serum concentrations of 25(OH)D3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4β,25(OH)2D3 and mean ratios of 25(OH)D3 to D3 and 1α,25(OH)2D3 to 25(OH)D3, while increasing the mean ratio of 24R,25(OH)2D3 to 25(OH)D3. Vitamin D3 increased mean four-month serum concentrations of 25(OH)D3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4β,25(OH)2D3 and the mean ratio of 24R,25(OH)2D3 to 25(OH)D3. Participants receiving vitamin D2 had lower mean postsupplementation ratios of 25(OH)D3 to vitamin D3 and 1α,25(OH)2D3 to 25(OH)D3 than those receiving vitamin D3. Mean postsupplementation ratios of 24R,25(OH)2D3 to 25(OH)D3 and 4β,25(OH)2D3 to 25(OH)D3 did not differ between groups. Conclusions Bolus-dose vitamin D2 is less effective than bolus-dose vitamin D3 in elevating total serum 25(OH)D concentration. Administration of vitamin D2 reduces 25-hydroxylation of vitamin D3 and 1-α hydroxylation of 25(OH)D3, while increasing 24R-hydroxylation of 25(OH)D3.


Gut ◽  
1979 ◽  
Vol 20 (7) ◽  
pp. 559-564 ◽  
Author(s):  
J M Barragry ◽  
R G Long ◽  
M W France ◽  
M R Wills ◽  
B J Boucher ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Agnieszka Kempińska-Podhorecka ◽  
Ewa Wunsch ◽  
Tomasz Jarowicz ◽  
Joanna Raszeja-Wyszomirska ◽  
Beata Loniewska ◽  
...  

Primary biliary cirrhosis (PBC) is a chronic cholestatic liver condition characterized by the immune-mediated damage of the intrahepatic bile ducts. Polymorphisms of vitamin D receptor (VDR) are considered to contribute to its pathogenesis however their incidence varies in different populations and their potential association with the course of the disease has not been studied. In this paper we investigated the incidence and correlation of three VDR polymorphisms (BsmI,ApaIorTaqI) with various clinical, biochemical, and serological factors in a homogenous group of 143 Caucasian patients with PBC. Control group comprises 306 DNA samples from umbilical cord blood of healthy newborn children. When compared to controls, we observed a significant dominance of theballele in theBsmI(OR = 1.69[1.27–2.24];P=0.0003) andtallele in theTaqI(OR = 0.62[0.47–0.82],P=0.0001) in patients with PBC. Moreover theBsmIandTaqIpolymorphisms were associated with the presence of advanced fibrosis/liver cirrhosis at the diagnosis of PBC. Pairwise linkage disequilibrium (LD) calculations proved that the analyzed SNPs are within an LD block (100% of LDs wereD’>0.9). Our study showed, for the first time, that the analyzed polymorphisms of VRD may exert an effect on a natural history of PBC.


Sign in / Sign up

Export Citation Format

Share Document