Bombesin-induced residual stimulation of amylase release from mouse pancreatic acini

1985 ◽  
Vol 248 (2) ◽  
pp. G196-G199
Author(s):  
J. M. Howard ◽  
R. T. Jensen ◽  
J. D. Gardner

When dispersed acini from mouse pancreas are first incubated with bombesin, washed, and then reincubated with fresh incubation solution containing no bombesin, there is significant residual stimulation of amylase release. Induction of residual stimulation is relatively rapid in that significant stimulation occurs as early as after 15's of first incubation with bombesin. Induction of residual stimulation of amylase release per se is temperature independent, but induction does occur more rapidly when acini are first incubated at 37 degrees C than when they are first incubated at 4 degrees C. Residual stimulation of amylase release persists for at least 75 min in acini that have been first incubated with bombesin at 37 degrees C. The maximal residual stimulation of amylase release obtained with pancreatic acini that have been first incubated with bombesin and then washed is 45% greater than the maximal stimulation obtained when bombesin is added directly to the incubation medium. In terms of their abilities to cause residual stimulation of amylase release, litorin and ranatensin are equal to bombesin in potency and efficacy. Gastrin-releasing peptide is approximately 70% as efficacious as bombesin in causing residual stimulation of amylase release.

1986 ◽  
Vol 235 (1) ◽  
pp. 139-143 ◽  
Author(s):  
R Bruzzone ◽  
T Pozzan ◽  
C B Wollheim

Cytosolic free calcium concentrations ([Ca2+]i) and amylase secretion were measured in isolated rat pancreatic acini loaded with the intracellularly trapped fluorescent indicator quin2. Both caerulein and carbamoylcholine caused a rapid increase in [Ca2+]i, with a maximal 3-fold increase at 10(-9) M-caerulein and 10(-4) M-carbamoylcholine. However, caerulein (10(-12) M and 10(-11) M) as well as carbamoylcholine (10(-7) M) caused a significant stimulation of amylase release, while not inducing any detectable rise in [Ca2+]i. Changes in [Ca2+]i after addition of either secretagogue were transient and did not last more than 2-3 min. By contrast, when amylase secretion was monitored as a function of time, two distinct secretory phases could be observed upon addition of either carbamoylcholine (10(-5) M) or caerulein (10(-10) M). An initial, rapid phase (0-5 min) which caused a 6-7-fold increase above basal, followed by a sustained (5-30 min), but less marked, secretory rate (2-3-fold above basal). Addition of atropine (10(-4) M) 5 min after carbamoylcholine (10(-5) M) (i.e. after termination of the rise in [Ca2+]i and of the first secretory phase) did not cause any significant change in [Ca2+]i, while significantly inhibiting amylase secretion from 5 to 30 min to the same rate observed in the absence of the secretagogue. These results show that caerulein and carbamoylcholine, two agents thought to activate secretion mainly through mobilization of Ca2+ from intracellular stores, are capable of eliciting amylase secretion independently of a concomitant rise in [Ca2+]i. Furthermore, with both secretagogues the rise in [Ca2+]i, when observed, was only transient, while the stimulation of amylase release was sustained.


1988 ◽  
Vol 255 (5) ◽  
pp. E652-E659 ◽  
Author(s):  
T. Matozaki ◽  
C. Sakamoto ◽  
M. Nagao ◽  
H. Nishizaki ◽  
S. Baba

To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (Gs) or inhibitory (Gi) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increased in cytoplasmic Ca2+ concentration from the internal Ca2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. However, NaF-stimulated Ca2+ mobilization had a lag period before detectable stimulation and was potentiated by AlCl3. These stimulatory effects of NaF appeared to be independent of cellular adenosine 3',5'-cyclic monophosphate (cAMP). Pretreatment with cholera toxin or pertussis toxin did not affect CCK8- or NaF-induced inositol phosphate accumulation or Ca2+ mobilization. 5'-Guanylimidodiphosphate activated the generation of inositol phosphates in the [3H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 microM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 microM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than Gs- or Gi-like protein.


1981 ◽  
Vol 241 (5) ◽  
pp. G359-G364 ◽  
Author(s):  
S. Abdelmoumene ◽  
J. D. Gardner

In dispersed acini from guinea pig pancreas, adding extracellular manganese increased amylase release. A significant effect could be detected with 0.25 mM manganese, and maximal stimulation occurred with 1 mM manganese. When manganese was added, the rate of amylase release did not change during the first 20 min of incubation and then gradually increased to a new steady state by 80 min, which with 1 mM manganese represented a fourfold increase in the rate of enzyme release. Extracellular manganese inhibited the stimulation of amylase release caused by those secretagogues that mobilize cellular calcium but augmented the stimulation caused by those secretagogues whose actions are mediated by cellular cAMP. The mechanism by which manganese altered stimulated amylase secretion differed from the mechanism by which manganese stimulated basal amylase release because the change in stimulated release was maximal within 10 min, whereas the change in basal release did not occur until after 20 min. The actions of manganese on secretagogue-stimulated amylase release were not attributable to manganese-induced changes in secretagogue-stimulated calcium outflux or cAMP and, instead, appear to result from actions of manganese on one of the later steps in the mechanisms for stimulating the secretory process.


1981 ◽  
Vol 240 (1) ◽  
pp. G38-G49 ◽  
Author(s):  
R. L. Dormer ◽  
J. H. Poulsen ◽  
V. Licko ◽  
J. A. Williams

45Ca2+ exchange and total calcium content were measured in isolated mouse pancreatic acini. 45Ca2+ uptake could be described as the sum of a constant and a single exponential kinetic component; about 60% of total acinar calcium was exchangeable. Stimulation by bethanechol increased 45Ca2+ uptake, but the time course of uptake could be fit only by the addition of a more rapid kinetic component without any change in the total exchangeable Ca2+. 45Ca2+ washout after 1-h loading could be fit as the sum of two exponential components. Stimulation increased the rate of 45Ca2+ washout with the appearance of a third and more rapid kinetic component. There was not, however, a good correspondence between the exponential constants measured in uptake and washout protocols in unstimulated acini. Exponential constants were also affected by the concentration of calcium in the medium, further indicating the presence of nonlinearities in 45Ca2+ exchange. The dose-response relationships were similar for bethanechol stimulation of 45Ca2+ uptake and amylase release, whereas stimulation of 45Ca2+ washout reached a maximum at a higher concentration of bethanechol. Both 45Ca2+ uptake and analytical measurement of total Ca2+ showed a rapid drop in acinar Ca2+ content followed by a gradual reuptake on stimulation by bethanechol. It is concluded that the initial primary effect of secretagogues is to increase Ca2+ efflux, which is interpreted to be the result of release of sequestered calcium into the cytosol.


1989 ◽  
Vol 257 (4) ◽  
pp. G594-G600 ◽  
Author(s):  
T. Matozaki ◽  
J. Martinez ◽  
J. A. Williams

Analysis of the competitive inhibition of 125I-labeled cholecystokinin octapeptide (CCK-8) binding to isolated rat or mouse pancreatic acini showed that in both species CCK-8 interacts with two different affinity sites. A newly synthesized CCK analogue modified at the COOH-terminal phenylalanine residue totally inhibited 125I-CCK binding. This interaction occurred with sites of a single affinity in rat acini but with two different affinity sites in mouse acini. When acini were incubated with increasing concentrations of CCK-8, a biphasic stimulation of amylase release was observed. By use of rat acini, the analogs stimulated amylase release but caused no inhibition at supramaximal concentrations. By contrast, in mouse pancreatic acini, analogues showed a biphasic stimulation of amylase release similar to CCK-8. Both CCK-8 and the analogue stimulated [3H]leucine incorporation into protein at low concentrations in rat pancreatic acini. Higher concentrations of CCK-8 profoundly inhibited [3H]leucine incorporation, whereas the analogue had no inhibitory effect. Moreover, the analogue at higher concentrations blocked the inhibition of [3H]leucine incorporation caused by CCK-8 but did not affect carbamylcholine-induced inhibition. In mouse acini, however, the CCK analogue inhibited [3H]leucine incorporation similar to the effect of CCK-8. The results support the concept that occupancy of distinct affinity sites or states of the CCK receptor is associated with specific biological actions. A model of the CCK receptor is proposed in which two interchangeable affinity states exist. By occupying all the receptors in only one state, the new CCK analogues serve as partial agonists of some and antagonists of other actions of CCK.


1981 ◽  
Vol 240 (6) ◽  
pp. G459-G465 ◽  
Author(s):  
S. M. Collins ◽  
S. Abdelmoumene ◽  
R. T. Jensen ◽  
J. D. Gardner

When pancreatic acini are first incubated with cholecystokinin, washed to remove free cholecystokinin and then reincubated in fresh incubation solution, there is significant residual stimulation of amylase secretion. This residual stimulation requires relatively high concentrations of the secretagogue, is reversible, and is specific for cholecystokinin. Induction of residual stimulation occurs more rapidly at 37 degrees C (maximal by 1 min) than at 4 degrees C (maximal by 10 min), and, once induced, residual stimulation persists for up to 75 min at 37 degrees C and for more than 90 min at 4 degrees C. The persistent effect of cholecystokinin on enzyme secretion cannot be accounted for by incomplete removal of the secretagogue by the wash procedure or by activation of some intermediate step in the mechanism of action of cholecystokinin that persists after the secretagogue dissociates from its receptors. Instead, cholecystokinin-induced residual stimulation of enzyme secretion appears to result from persistent occupation of cholecystokinin receptors by the secretagogue.


1983 ◽  
Vol 245 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
S. J. Pandol ◽  
V. E. Sutliff ◽  
S. W. Jones ◽  
C. G. Charlton ◽  
T. L. O'Donohue ◽  
...  

In dispersed acini from guinea pig pancreas, natural glucagon caused a two- to threefold increase in amylase secretion, and this natural glucagon-induced increase was augmented by theophylline. Natural glucagon also caused a sixfold increase in cellular cAMP but did not alter cellular cGMP or outflux of 45Ca. Natural glucagon caused detectable changes in cAMP and amylase secretion at a concentration of 1 microM, half-maximal stimulation at 10 microM, and maximal stimulation at 100 microM. Natural glucagon potentiated the increase in enzyme secretion caused by secretagogues that act by causing mobilization of cellular calcium but did not alter the increase in enzyme secretion caused by secretagogues that increase or mimic the action of cellular cAMP. At concentrations up to 100 microM, natural glucagon did not inhibit binding of 125I-vasoactive intestinal peptide. The potency with which glucagon stimulated amylase release and augmented the increase in amylase release caused by cholecystokinin or carbachol was the same with acini from rat or mouse pancreas as it was with acini from guinea pig pancreas. Biologically active synthetic glucagon did not increase enzyme secretion. On reverse-phase, high-pressure liquid chromatography of natural glucagon, the ability to stimulate enzyme secretion migrated differently from the glucagon. Natural glucagon, at concentrations that stimulated cAMP accumulation, did not react with vasoactive intestinal peptide or secretin radioimmunoassays. Neither insulin nor pancreatic polypeptide, which are known to contaminate natural glucagon preparations, increased enzyme secretion from pancreatic acini. Trypsin treatment abolished the ability of natural glucagon to increase enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)


1979 ◽  
Vol 236 (6) ◽  
pp. E754
Author(s):  
J D Gardner ◽  
C L Costenbader ◽  
E R Uhlemann

In dispersed acini prepared from guinea pig pancreas, removing extracellular calcium did not alter the basal rate of amylase release but reduced the stimulation of enzyme release caused by cholecystokinin, carbachol, secretin, and vasoactive intestinal peptide as well as that caused by derivatives of cyclic nucleotides. In acini incubated in a calcium-free, EGTA-containing medium the increase in amylase release caused by each secretagogue tested did not change during the initial 10 min of incubation, decreased by approximately 65% during the subsequent 40 min, and remained constant thereafter. Removing extracellular calcium did not alter the maximally effective concentrations of cholecystokinin or vasoactive intestinal peptide but abolished the decrease in stimulated enzyme secretion seen with supramaximal concentrations of cholecystokinin. Incubating pancreatic acini with cholecystokinin or carbachol plus secretin or vasoactive intestinal peptide caused potentiation of amylase release, and removing extracellular calcium reduced the stimulation of enzyme release caused by the two secretagogues in combination but did not alter their potentiating interactions.


1989 ◽  
Vol 121 (3) ◽  
pp. 579-583 ◽  
Author(s):  
K. L. Henville ◽  
J. P. Hinson ◽  
G. P. Vinson ◽  
S. M. Laird

ABSTRACT The responses of human adrenocortical cells to stimulation by ACTH(1–24), desacetyl-α-MSH, α-MSH and angiotensin II amide have been compared. Both desacetyl-α-MSH, thought to be the major form of the peptide in the human pituitary and in circulating plasma, and α-MSH caused a significant stimulation of aldosterone, corticosterone and cortisol secretion. Significant stimulation of the production of these steroids was obtained with desacetyl-α-MSH at a concentration of 1 nmol/l, while the response to α-MSH was considerably less sensitive, with a minimum effective concentration of 0·1 μmol/l. These values compared with minimum effective concentrations of 1 pmol/l for ACTH and 0·1 μmol/l for angiotensin II amide. Although cell types were not separated, it is possible to conclude that none of the peptides showed any specificity for the zona glomerulosa, and in each case the same minimum effective concentration of peptide was required for both aldosterone and cortisol secretion. Yields of steroid obtained under conditions of maximal stimulation by ACTH(1–24), α-MSH and desacetyl-α-MSH were at least three to five times the basal output of aldosterone, four to eight times that for corticosterone and more than seven to sixteen times that for cortisol. Angiotensin II amide was a relatively poor stimulant with maximal stimulation only 1·5 × basal. In these experiments the minimum effective concentration for desacetyl-α-MSH (1 nmol/l) was close to the circulating concentration of desacetyl-α-MSH (0·3 nmol/l) in man, and it is thus possible that this peptide may have a physiological role in the control of adrenocortical function. Journal of Endocrinology (1989) 121, 579–583


1987 ◽  
Vol 253 (5) ◽  
pp. G690-G696 ◽  
Author(s):  
K. J. Carter ◽  
P. L. Rutledge ◽  
M. L. Steer ◽  
W. Silen

The response of the intracellular pH (pHi) to stimulation of enzyme secretion in pancreatic acini was measured using the fluorescent dye 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Acini suspended in pH 7.40 buffer demonstrated cytoplasmic alkalinization of 0.17, 0.14, and 0.15 pH units 2 min after addition of the secretagogues carbachol (10(-5) M), caerulein (10(-10) M), and bromo-A23187 (10(-6) M). Corresponding net stimulated amylase secretion over 30 min was 9.2, 10.3, and 5.6% of total content, respectively. Pretreatment of acini with atropine blocked the pHi rise induced by carbachol; addition of atropine 2 min after the carbachol did not reverse the alkalinization. Acini suspended in Ca2+ free buffer containing 0.1 or 0.2 mM ethylene glycol tetraacetic acid showed 0.21 and 0.10 pH unit alkalinization in response to caerulein (10(-10) M) and carbachol (10(-5) M) but no change in pHi after addition of bromo-A23187. Amylase release in response to increasing concentrations of caerulein was maximal at 10(-10) M, with decreasing rates of amylase release at higher drug concentrations (10(-8), 10(-7) M). Alkalinization in response to stimulation of secretion was maximal at 10(-8) M caerulein (0.30 pH units at 2 min) but was of lesser magnitude at 10(-7) M. Pancreatic acini demonstrated autoregulation of pHi over a range of external pH from 7.4 to 7.1. Net amylase release over 30 min in response to 10(-5) M carbachol was sustained at normal levels in buffers of pH varying between 7.7 and 6.5. In contrast, cytoplasmic alkalinization in response to carbachol occurred only in buffers with pH values between 7.40 and 7.10. These results indicate that amylase release occurs over a wide range of pHi and is not invariably associated with secretagogue-induced alkalinization.


Sign in / Sign up

Export Citation Format

Share Document