scholarly journals Caerulein and carbamoylcholine stimulate pancreatic amylase release at resting cytosolic free Ca2+

1986 ◽  
Vol 235 (1) ◽  
pp. 139-143 ◽  
Author(s):  
R Bruzzone ◽  
T Pozzan ◽  
C B Wollheim

Cytosolic free calcium concentrations ([Ca2+]i) and amylase secretion were measured in isolated rat pancreatic acini loaded with the intracellularly trapped fluorescent indicator quin2. Both caerulein and carbamoylcholine caused a rapid increase in [Ca2+]i, with a maximal 3-fold increase at 10(-9) M-caerulein and 10(-4) M-carbamoylcholine. However, caerulein (10(-12) M and 10(-11) M) as well as carbamoylcholine (10(-7) M) caused a significant stimulation of amylase release, while not inducing any detectable rise in [Ca2+]i. Changes in [Ca2+]i after addition of either secretagogue were transient and did not last more than 2-3 min. By contrast, when amylase secretion was monitored as a function of time, two distinct secretory phases could be observed upon addition of either carbamoylcholine (10(-5) M) or caerulein (10(-10) M). An initial, rapid phase (0-5 min) which caused a 6-7-fold increase above basal, followed by a sustained (5-30 min), but less marked, secretory rate (2-3-fold above basal). Addition of atropine (10(-4) M) 5 min after carbamoylcholine (10(-5) M) (i.e. after termination of the rise in [Ca2+]i and of the first secretory phase) did not cause any significant change in [Ca2+]i, while significantly inhibiting amylase secretion from 5 to 30 min to the same rate observed in the absence of the secretagogue. These results show that caerulein and carbamoylcholine, two agents thought to activate secretion mainly through mobilization of Ca2+ from intracellular stores, are capable of eliciting amylase secretion independently of a concomitant rise in [Ca2+]i. Furthermore, with both secretagogues the rise in [Ca2+]i, when observed, was only transient, while the stimulation of amylase release was sustained.

1985 ◽  
Vol 249 (2) ◽  
pp. G214-G220 ◽  
Author(s):  
R. T. Jensen ◽  
R. B. Murphy ◽  
M. Trampota ◽  
L. H. Schneider ◽  
S. W. Jones ◽  
...  

Proglumide [N-(benzoyl)-L-glutamic acid-1-di-n-propylamide] is a specific cholecystokinin receptor antagonist. In the present study we synthesized various analogues of proglumide and used pancreatic acini from guinea pig pancreas to examine the abilities of these analogues to function as cholecystokinin receptor antagonists. Each analogue inhibited cholecystokinin octapeptide-stimulated amylase secretion but did not stimulate amylase secretion when present alone. There was a close correlation between the ability of a particular analogue to inhibit the action of cholecystokinin on acinar cell function and its ability to inhibit binding of 125I-cholecystokinin. Structure-function studies demonstrated that neither the dipropylamide nor the benzoyl moieties are essential for inhibiting the action of cholecystokinin but that both groups are important in determining the inhibitory potency. Replacing the dipropylamide group with a hydroxyl group caused a 13-fold decrease in potency. Replacing the benzoyl moiety by an acetyl group caused a 30- to 40-fold decrease in inhibitory potency, whereas replacing the benzoyl moiety by a p-chlorophenoxyacetyl or phenoxyacetyl moiety caused a 75-fold increase in potency. Replacing both the dipropylamide moiety with a hydroxyl group and the benzoyl moiety with a phenoxyacetyl group resulted in a 5-fold decrease in inhibitory potency. Inhibition of cholecystokinin-stimulated amylase release by both the phenoxyacetyl and p-chlorophenoxyacetyl analogues was competitive in nature, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (5) ◽  
pp. G690-G696 ◽  
Author(s):  
K. J. Carter ◽  
P. L. Rutledge ◽  
M. L. Steer ◽  
W. Silen

The response of the intracellular pH (pHi) to stimulation of enzyme secretion in pancreatic acini was measured using the fluorescent dye 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Acini suspended in pH 7.40 buffer demonstrated cytoplasmic alkalinization of 0.17, 0.14, and 0.15 pH units 2 min after addition of the secretagogues carbachol (10(-5) M), caerulein (10(-10) M), and bromo-A23187 (10(-6) M). Corresponding net stimulated amylase secretion over 30 min was 9.2, 10.3, and 5.6% of total content, respectively. Pretreatment of acini with atropine blocked the pHi rise induced by carbachol; addition of atropine 2 min after the carbachol did not reverse the alkalinization. Acini suspended in Ca2+ free buffer containing 0.1 or 0.2 mM ethylene glycol tetraacetic acid showed 0.21 and 0.10 pH unit alkalinization in response to caerulein (10(-10) M) and carbachol (10(-5) M) but no change in pHi after addition of bromo-A23187. Amylase release in response to increasing concentrations of caerulein was maximal at 10(-10) M, with decreasing rates of amylase release at higher drug concentrations (10(-8), 10(-7) M). Alkalinization in response to stimulation of secretion was maximal at 10(-8) M caerulein (0.30 pH units at 2 min) but was of lesser magnitude at 10(-7) M. Pancreatic acini demonstrated autoregulation of pHi over a range of external pH from 7.4 to 7.1. Net amylase release over 30 min in response to 10(-5) M carbachol was sustained at normal levels in buffers of pH varying between 7.7 and 6.5. In contrast, cytoplasmic alkalinization in response to carbachol occurred only in buffers with pH values between 7.40 and 7.10. These results indicate that amylase release occurs over a wide range of pHi and is not invariably associated with secretagogue-induced alkalinization.


1979 ◽  
Vol 236 (5) ◽  
pp. E571
Author(s):  
E R Uhlemann ◽  
A J Rottman ◽  
J D Gardner

In dispersed acini prepared from guinea pig pancreas, peptides isolated from amphibian skin (caerulein, bombesin, litorin, and physalaemin) as well as eledoisin, a peptide isolated from the posterior salivary gland of a Mediterranean octopod, caused a significant increase in amylase release. Each amphibian peptide potentiated the stimulation of amylase release caused by vasoactive intestinal peptide or secretin in that the increase in amylase release caused by an amphibian peptide plus vasoactive intestinal peptide or secretin was significantly greater than the sum of the increase caused by each secretagogue acting alone. Potentiation of amylase secretion did not occur with an amphibian peptide plus cholecystokinin or carbachol.


1985 ◽  
Vol 248 (2) ◽  
pp. G196-G199
Author(s):  
J. M. Howard ◽  
R. T. Jensen ◽  
J. D. Gardner

When dispersed acini from mouse pancreas are first incubated with bombesin, washed, and then reincubated with fresh incubation solution containing no bombesin, there is significant residual stimulation of amylase release. Induction of residual stimulation is relatively rapid in that significant stimulation occurs as early as after 15's of first incubation with bombesin. Induction of residual stimulation of amylase release per se is temperature independent, but induction does occur more rapidly when acini are first incubated at 37 degrees C than when they are first incubated at 4 degrees C. Residual stimulation of amylase release persists for at least 75 min in acini that have been first incubated with bombesin at 37 degrees C. The maximal residual stimulation of amylase release obtained with pancreatic acini that have been first incubated with bombesin and then washed is 45% greater than the maximal stimulation obtained when bombesin is added directly to the incubation medium. In terms of their abilities to cause residual stimulation of amylase release, litorin and ranatensin are equal to bombesin in potency and efficacy. Gastrin-releasing peptide is approximately 70% as efficacious as bombesin in causing residual stimulation of amylase release.


1988 ◽  
Vol 255 (5) ◽  
pp. E652-E659 ◽  
Author(s):  
T. Matozaki ◽  
C. Sakamoto ◽  
M. Nagao ◽  
H. Nishizaki ◽  
S. Baba

To clarify the possible role of a guanine nucleotide-binding protein (G protein) in the signal transducing system activated by cholecystokinin (CCK), actions of CCK on rat pancreatic acini were compared with those of fluoride, a well-known activator of stimulatory (Gs) or inhibitory (Gi) G protein. When acini were incubated with increasing concentrations of either CCK-octapeptide (CCK8) or NaF, a maximal stimulation of amylase release from acini occurred at 100 pM CCK8 or 10 mM NaF, respectively; this secretory rate decreased as CCK8 or NaF concentration was increased. NaF caused an increased in cytoplasmic Ca2+ concentration from the internal Ca2+ store and stimulated accumulation of inositol phosphates in acini, as observed with CCK. However, NaF-stimulated Ca2+ mobilization had a lag period before detectable stimulation and was potentiated by AlCl3. These stimulatory effects of NaF appeared to be independent of cellular adenosine 3',5'-cyclic monophosphate (cAMP). Pretreatment with cholera toxin or pertussis toxin did not affect CCK8- or NaF-induced inositol phosphate accumulation or Ca2+ mobilization. 5'-Guanylimidodiphosphate activated the generation of inositol phosphates in the [3H]inositol-labeled pancreatic acinar cell membrane preparation, with half-maximal and maximal stimulation at 1 and 10 microM, respectively. Furthermore, the effects of submaximal CCK concentrations on inositol phosphate accumulation in membranes were markedly potentiated in the presence of 100 microM GTP, which alone was ineffective. Combined findings of the present study strongly suggest that pancreatic CCK receptors are probably coupled to the activation of polyphosphoinositide (PI) breakdown by a G protein, which appears to be fluoride sensitive but is other than Gs- or Gi-like protein.


1981 ◽  
Vol 241 (5) ◽  
pp. G359-G364 ◽  
Author(s):  
S. Abdelmoumene ◽  
J. D. Gardner

In dispersed acini from guinea pig pancreas, adding extracellular manganese increased amylase release. A significant effect could be detected with 0.25 mM manganese, and maximal stimulation occurred with 1 mM manganese. When manganese was added, the rate of amylase release did not change during the first 20 min of incubation and then gradually increased to a new steady state by 80 min, which with 1 mM manganese represented a fourfold increase in the rate of enzyme release. Extracellular manganese inhibited the stimulation of amylase release caused by those secretagogues that mobilize cellular calcium but augmented the stimulation caused by those secretagogues whose actions are mediated by cellular cAMP. The mechanism by which manganese altered stimulated amylase secretion differed from the mechanism by which manganese stimulated basal amylase release because the change in stimulated release was maximal within 10 min, whereas the change in basal release did not occur until after 20 min. The actions of manganese on secretagogue-stimulated amylase release were not attributable to manganese-induced changes in secretagogue-stimulated calcium outflux or cAMP and, instead, appear to result from actions of manganese on one of the later steps in the mechanisms for stimulating the secretory process.


1988 ◽  
Vol 254 (5) ◽  
pp. G664-G670 ◽  
Author(s):  
D. Bosco ◽  
M. Chanson ◽  
R. Bruzzone ◽  
P. Meda

To assess the secretion of individual rat pancreatic acini, we developed a reverse hemolytic plaque assay that allows for a direct visualization of amylase release. This release was detected around secreting cells by the presence of hemolytic plaques that resulted from the complement-mediated lysis of red blood cells bearing amylase-antiamylase complexes bound to protein A. Controls showed that these plaques reflected specifically the active secretion of amylase. Quantitation of hemolytic plaques showed that after a 30-min incubation approximately 50% of the acini secreted under basal conditions. Stimulation of amylase release by increasing concentrations of carbamylcholine resulted in a dose-dependent recruitment of secreting acini as well as in a time-dependent enhancement in the response of individual acini. Under all conditions, the wide distribution of hemolytic plaque sizes indicated large differences in the secretory output of individual acini. Thus, using a new method to directly visualize and quantitate amylase secretion, we have provided evidence for a functional heterogeneity of pancreatic acini.


1983 ◽  
Vol 244 (3) ◽  
pp. G273-G277
Author(s):  
W. F. Stenson ◽  
E. Lobos ◽  
H. J. Wedner

Isolated guinea pig pancreatic acini were specifically depleted of glutathione by treatment with 2-cyclohexene-1-one (2-CHX-1). Untreated acini contained 4.3 +/- 0.6 micrograms of glutathione per milligram protein. Incubation with 1 mM 2-CHX-1 for 5 min at 37 degrees C depleted glutathione to 17% of control values; 5 mM 2-CHX-1 depleted glutathione to less than 4% of control values. Incubation with 2-CHX-1 also impaired the ability of the isolated acini to secrete amylase in response to stimulation with carbachol and the ionophore A23187. The depletion of glutathione and the inhibition of amylase secretion by 2-CHX-1 were both dose dependent and time dependent. Incubation of acini with 2 mM 2-CHX-1 for 15 min at 37 degrees C reduced glutathione levels to 6.6% of control and reduced carbachol-stimulated amylase release to 63% of control. Higher doses of 2-CHX-1 or longer incubations resulted in greater depletion of glutathione and greater inhibition of carbachol-induced amylase release. These data indicate that specific depletion of glutathione impairs the ability of isolated acini to secrete amylase in response to physiological and pharmacologic stimuli and suggest that glutathione has a role in stimulus-secretion coupling in the exocrine pancreas.


1988 ◽  
Vol 254 (2) ◽  
pp. G217-G223 ◽  
Author(s):  
P. Singh ◽  
I. Asada ◽  
A. Owlia ◽  
T. J. Collins ◽  
J. C. Thompson

We have examined the direct effect of somatostatin (SRIF) on basal and stimulated amylase release from guinea pig pancreatic acini using the in vitro method of continuous perifusion. The optimal conditions of flow rate, chamber size, acinar cell volume per chamber, and period of secretagogue infusion were defined for the perifusion system. The kinetic profile of amylase release in response to cholecystokinin-octapeptide (CCK-8), vasoactive intestinal peptide (VIP), and SRIF was studied. Under optimal conditions, the acini were found to remain equally responsive to an ED50 dose of CCK-8 (0.5-0.8 nM) for 12 h of perifusion. The duration of amylase response to any given dose of CCK-8, given for the optimal period of 5 min, was 80-100 min. The total amylase released minus the basal release divided by 90 min (delta response) in response to the maximum effective (Maxeff) dose of CCK-8 (100 nM) was 14,667 +/- 1,433 U/l (amounting to a 10-fold increase compared with basal values). When compared with the amount of total delta amylase released in response to the Maxeff dose of CCK, the total amylase released in response to the Maxeff doses of SRIF (1 microM) and VIP (10 nM) was 10-21% and 51-59%, respectively. SRIF (100 nM) significantly decreased VIP- (0.1-1.0 nM) stimulated amylase release by 45-70% in the perifusion method of study but had no significant effect on the CCK-stimulated amylase release. This suggests that the perifusion method can be used for investigating the mechanism of SRIF-mediated inhibition of VIP effects on amylase release in an in vitro system.


Sign in / Sign up

Export Citation Format

Share Document