Two calcium channels in basolateral membranes of rabbit ileal epithelial cells

1989 ◽  
Vol 257 (1) ◽  
pp. G86-G93
Author(s):  
F. R. Homaidan ◽  
M. Donowitz ◽  
G. A. Weiland ◽  
G. W. Sharp

The actions of three different types of calcium channel blockers on short-circuit current (Isc) in rabbit ileum were studied. These included the phenylalkylamines, verapamil and (l)-desmethoxyverapamil (D888); the dihydropyridines, nifedipine and nitrendipine; and the benzothiazepine, diltiazem. All of the drugs decreased Isc, a change associated with increased Na and Cl absorption. Verapamil and D888 had the largest effects. The dihydropyridine, BAY K 8644, a calcium channel activator, increased Isc and decreased Na and Cl absorption, effects not inhibited by tetrodotoxin. The phenylalkylamines had an additional effect on Isc in the presence of a maximally inhibitory concentration of the dihydropyridines, suggesting the possibility of two distinct calcium channels, one of which is the L-type voltage-activated, dihydropyridine- and phenylalkylamine-sensitive channel, and the other is a channel only sensitive to phenylalkylamines but not to dihydropyridines. [3H]nitrendipine and [3H]D888 binding to an enriched preparation of basolateral membranes from ileal epithelial cells was characterized. Each ligand bound specifically and saturably to an apparently single population of high-affinity sites with [3H]D888 having three times as many binding sites as [3H]nitrendipine. [3H]nitrendipine binding was partially inhibited by verapamil and D888 and was increased by diltiazem; whereas [3H]D888 binding was inhibited completely by verapamil but only partially by nitrendipine and diltiazem. These transport and binding studies suggest the presence of two types of Ca2+ channels in ileal epithelial cells, one of which interacts with the dihydropyridines, the phenylalkylamines, and the benzothiazepines at three different sites and the other channel that only binds the phenylalkylamines.

1992 ◽  
Vol 263 (4) ◽  
pp. R827-R833 ◽  
Author(s):  
T. C. Cox

The larval frog skin has a very high electrical resistance and a corresponding low rate of transepithelial ion transport. Amiloride, a blocker of sodium transport in adult skin, transiently stimulates rather than inhibits short-circuit current (Isc) across larval skin. The time course and concentration response to amiloride and the effects of calcium channel blockers on Isc were studied with larval frog skin mounted in modified Ussing chambers. The amiloride (1 mM) transient was markedly blunted if the skin was previously exposed to low amiloride (0.01-0.1 mM) concentrations. The calcium channel blockers verapamil, nitrendipine, diltiazem, W-7, and lanthanum all blocked the amiloride transient. Diltiazem itself caused a rapid transient in Isc, indicating that it may be a partial agonist. These data suggest that the amiloride-stimulated cation channels rapidly desensitize in a manner similar to the acetylcholine receptor. The decline in Isc after amiloride stimulation could be caused by amiloride block of the open channel. Blockade of amiloride stimulation by well-known calcium channel blockers suggests that these larval cation channels may have some characteristics in common with calcium channels.


2008 ◽  
Vol 197 (3) ◽  
pp. 575-582 ◽  
Author(s):  
Chatsri Deachapunya ◽  
Sutthasinee Poonyachoti ◽  
Nateetip Krishnamra

The effect of prolactin (PRL) on ion transport across the porcine glandular endometrial epithelial cells was studied in primary cell culture using the short-circuit current technique. Addition of 1 μg/ml PRL either to the apical solution or to the basolateral solution produced a peak followed by a sustained increase in Isc, but with a lesser response when PRL was added apically. Basolateral addition of PRL increased the Isc in a concentration-dependent manner with a maximum effect at 1 μg/ml and an effective concentration value of 120 ng/ml. The PRL-stimulated Isc was significantly reduced by pretreatment with an apical addition of 5-nitro-2-(3-phenylpropylamino) benzoic acid (200 μM), diphenylamine-2-carboxylic acid (1 mM) or 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (200 μM), Cl− channel blockers, but not by amiloride (10 μM), a Na+ channel blocker. In addition, pretreatment with bumetanide (200 μM), a Na+–K+–2Cl− cotransporter inhibitor, in the basolateral solution significantly reduced the PRL-stimulated Isc. Replacement of Cl− or in the bathing solutions also decreased the Isc response to PRL. Pretreatment of the monolayer with AG490 (50 μM), an inhibitor of JAK2 activity significantly inhibited the PRL-induced increase in Isc. Western blot analysis of the porcine endometrial epithelial cells revealed the presence of short isoform of PRL receptor (PRLR-S) that could be regulated by 17β-estradiol. The results of this investigation showed that PRL acutely stimulated anion secretion across the porcine endometrial epithelial cells possibly through PRLR-S present in both apical and basolateral membranes. The PRL response appeared to be mediated by the JAK2-dependent pathway.


1988 ◽  
Vol 254 (4) ◽  
pp. G586-G594
Author(s):  
F. R. Homaidan ◽  
M. Donowitz ◽  
J. Wicks ◽  
S. Cusolito ◽  
M. E. el Sabban ◽  
...  

An interaction between Ca2+ channel blockers and alpha 2-adrenergic receptors has been demonstrated in rabbit ileum by studying the effect of clonidine on active electrolyte transport, under short-circuited conditions, in the presence and absence of several Ca2+ channel blocking agents. Clonidine, verapamil, diltiazem, cadmium, and nitrendipine all decrease short-circuit current and stimulate NaCl absorption to different extents with clonidine having the largest effect. Exposure to verapamil, diltiazem, and cadmium inhibited the effects of clonidine on transport, whereas nitrendipine had no such effect. Verapamil, diltiazem, and cadmium, but not nitrendipine, also decreased the specific binding of [3H]alpha 2-adrenergic agents to a preparation of ileal basolateral membranes explaining the observed decrease in the transport effects of clonidine. The effective concentrations of the Ca2+ channel blockers that inhibited the effects of clonidine on transport were fairly similar to the concentrations needed to inhibit its specific binding. The displacement of clonidine by calcium channel blockers is ascribed to a nonspecific effect of these agents, although the possibility that their effects are exerted via their binding to the calcium channels is not excluded.


1997 ◽  
Vol 273 (4) ◽  
pp. C1354-C1361 ◽  
Author(s):  
David A. Carré ◽  
Claire H. Mitchell ◽  
Kim Peterson-Yantorno ◽  
Miguel Coca-Prados ◽  
Mortimer M. Civan

Ciliary epithelial cells possess multiple purinergic receptors, and occupancy of A1 and A2 adenosine receptors is associated with opposing effects on intraocular pressure. Aqueous adenosine produced increases in short-circuit current across rabbit ciliary epithelium, blocked by removing Cl− and enhanced by aqueous Ba2+. Adenosine’s actions were further studied with nonpigmented ciliary epithelial (NPE) cells from continuous human HCE and ODM lines and freshly dissected bovine cells. With gramicidin present, adenosine (≥3 μM) triggered isosmotic shrinkage of the human NPE cells, which was inhibited by the Cl− channel blockers 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) and niflumic acid. At 10 μM, the nonmetabolizable analog 2-chloroadenosine and AMP also produced shrinkage, but not inosine, UTP, or ATP. 2-Chloroadenosine (≥1 μM) triggered increases of whole cell currents in HCE cells, which were partially reversible, Cl− dependent, and reversibly inhibited by NPPB. Adenosine (≥10 μM) also stimulated whole cell currents in bovine NPE cells. We conclude that occupancy of adenosine receptors stimulates Cl− secretion in mammalian NPE cells.


1991 ◽  
Vol 261 (2) ◽  
pp. L188-L194 ◽  
Author(s):  
P. I. Plews ◽  
Z. A. Abdel-Malek ◽  
C. A. Doupnik ◽  
G. D. Leikauf

The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.


2019 ◽  
Vol 216 (5) ◽  
pp. 250-253 ◽  
Author(s):  
Paul J. Harrison ◽  
Elizabeth M. Tunbridge ◽  
Annette C. Dolphin ◽  
Jeremy Hall

SummaryWe reappraise the psychiatric potential of calcium channel blockers (CCBs). First, voltage-gated calcium channels are risk genes for several disorders. Second, use of CCBs is associated with altered psychiatric risks and outcomes. Third, research shows there is an opportunity for brain-selective CCBs, which are better suited to psychiatric indications.


1993 ◽  
Vol 264 (6) ◽  
pp. C1388-C1394 ◽  
Author(s):  
A. Y. Leung ◽  
H. L. Tai ◽  
P. Y. Wong

A study was carried out to investigate an ATP-sensitive Ca2+ pool in rat epididymal cells and its role in transepithelial Cl- secretion. In normal buffered solution containing 2.5 mM free Ca2+, ATP triggered single calcium spikes in a dose-dependent fashion. In nominally Ca(2+)-free solution, the peaks of successive Ca2+ spikes diminished after repeated ATP stimulations. Addition of Sr2+ (2.5 mM) to Ca(2+)-free solution after ATP stimulation did not cause changes in fluorescence signals. However, in the presence of Sr2+, ATP gave rise to apparent repetitive Ca2+ spikes of similar magnitudes after repeated stimulations. Increasing the time of exposure in Ca(2+)-free solution containing 50 microM ethylene glycol-bis(beta-amino-ethyl ether)-N,N,N',N'-tetraacetic acid rapidly decreased the intracellular Ca2+ concentration ([Ca2+]i) response to subsequent ATP stimulation. On the other hand, increasing the time of exposure in Sr(2+)-containing solution in Ca(2+)-depleted cells rapidly increased the apparent [Ca2+]i response to subsequent ATP stimulation. These observations suggested the existence of a Ca2+ pool that was rapidly exchanging with the extracellular compartment. Apical application of ATP elicited a transient rise in short-circuit current across the epididymal epithelium in a dose-dependent fashion, and the response was reduced by prior stimulation with thapsigargin. Ca2+ released from a rapidly exchanging ATP-sensitive store might stimulate Cl- secretion in the epididymis, thereby maintaining the electrolyte contents and fluidity of the epididymal microenvironment.


1998 ◽  
Vol 275 (5) ◽  
pp. L917-L923 ◽  
Author(s):  
Luis J. V. Galietta ◽  
Luciana Musante ◽  
Leila Romio ◽  
Ubaldo Caruso ◽  
Annarita Fantasia ◽  
...  

We performed Ussing chamber experiments on cultured human bronchial epithelial cells to look for the presence of electrogenic dibasic amino acid transport. Apical but not basolaterall-arginine (10–1,000 μM) increased the short-circuit current. Maximal effect and EC50were ∼3.5 μA/cm2and 80 μM, respectively, in cells from normal subjects and cystic fibrosis patients. The involvement of nitric oxide was ruled out because a nitric oxide synthase inhibitor ( NG-nitro-l-arginine methyl ester) did not decrease the arginine-dependent current. Apicall-lysine,l-alanine, andl-proline, but not aspartic acid, were also effective in increasing the short-circuit current, with EC50values ranging from 26 to 971 μM. Experiments performed with radiolabeled arginine demonstrated the presence of an Na+-dependent concentrative transporter on the apical membrane of bronchial cells. This transporter could be important in vivo to maintain a low amino acid concentration in the fluid covering the airway surface.


Peptides ◽  
1994 ◽  
Vol 15 (8) ◽  
pp. 1431-1436 ◽  
Author(s):  
Fadia R. Homaidan ◽  
Shao Hua Tang ◽  
Mark Donowitz ◽  
Geoffrey W.G. Sharp

1999 ◽  
Vol 277 (2) ◽  
pp. C271-C279 ◽  
Author(s):  
J. Beltinger ◽  
B. C. McKaig ◽  
S. Makh ◽  
W. A. Stack ◽  
C. J. Hawkey ◽  
...  

The epithelium of the gastrointestinal tract transports ions and water but excludes luminal microorganisms and toxic molecules. The factors regulating these important functions are not fully understood. Intestinal myofibroblasts lie subjacent to the basement membrane, at the basal surface of epithelial cells. We recently showed that primary cultures of adult human colonic subepithelial myofibroblasts express cyclooxygenase (COX)-1 and COX-2 enzymes and release bioactive transforming growth factor-β (TGF-β). In this study we have investigated the role of normal human colonic subepithelial myofibroblasts in the regulation of transepithelial resistance and secretory response in HCA-7 and T84 colonic epithelial cell lines. Cocultures of epithelial cells-myofibroblasts and medium conditioned by myofibroblasts enhanced transepithelial resistance and delayed mannitol flux. A panspecific antibody to TGF-β (but not piroxicam) antagonized this effect. In HCA-7 cells, myofibroblasts downregulated secretagogue-induced change in short-circuit current, and this effect was reversed by pretreatment of myofibroblasts with piroxicam. In contrast to HCA-7 cells, myofibroblasts upregulated the agonist-induced secretory response in T84 cells. This study shows that intestinal subepithelial myofibroblasts enhance barrier function and modulate electrogenic chloride secretion in epithelial cells. The enhancement of barrier function was mediated by TGF-β. In contrast, the modulation of agonist-induced change in short-circuit current was mediated by cyclooxygenase products. These findings suggest that colonic myofibroblasts regulate important functions of epithelial cells via distinct secretory products.


Sign in / Sign up

Export Citation Format

Share Document