Stimulation of Cl- and HCO3- secretion by intramural cholinergic neurons in guinea pig antrum in vitro

1993 ◽  
Vol 264 (1) ◽  
pp. G118-G125 ◽  
Author(s):  
A. G. Suzuki ◽  
J. Kameyama ◽  
M. Tsukamoto ◽  
K. Kaneko ◽  
Y. Suzuki

Regulation of Cl- and HCO3- secretion by intramural cholinergic neurons was investigated in guinea pig antrum in vitro. Sheet preparations composed of the mucosa and the submucosa were mounted between Ussing chambers and bathed with buffer-free solution on the luminal surface and with HCO3(-)-CO2 solution on the serosal side. Short-circuit current (Isc), unidirectional fluxes of 36Cl and 22Na, and the luminal alkalinization rate (JOHSL) were determined. Electrical stimulation of the preparations elicited increases in both JOHSL and Isc, which were inhibited by tetrodotoxin (TTX) and atropine. Physostigmine also evoked TTX- and atropine-sensitive increases in JOHSL and Isc. Similar increases in JOHSL and Isc were observed when the muscarinic agonist bethanechol chloride (BCh) was added to the serosal side. The responses to BCh were not affected by TTX. The BCh-induced increase in JOHSL was largely abolished by removal of HCO3- or Na+ and addition of ouabain (serosal side) but was neither sensitive to Cl- removal nor associated with 22Na secretion. The increase in Isc induced by BCh was associated with the increase in 36Cl secretion and was inhibited by removal of Cl- or Na+ and by addition of bumetanide or ouabain (both, serosal side). These results suggest that the submucosal cholinergic neurons are involved via muscarinic receptors in the stimulation of epithelial HCO3- and Cl- secretion. For both HCO3- and Cl-, the cellular and membrane mechanisms of secretion induced by muscarinic stimulation, although not entirely clear, appear to be different from those occurring under baseline conditions.

1994 ◽  
Vol 266 (2) ◽  
pp. C552-C558 ◽  
Author(s):  
D. R. Halm ◽  
S. T. Halm

Distal colon from guinea pig was stimulated in vitro by aldosterone in Ussing chambers that allowed measurement of short-circuit current (Isc) and tissue conductance (Gt). The response to aldosterone was delayed by approximately 20 min and resulted in a negative Isc, consistent with K secretion. Approximately 1 h later the Isc began to increase and eventually became positive, consistent with subsequent stimulation of Na absorption. The Na-absorptive response could be inhibited by mucosal amiloride without altering the rate of K secretion. Similarly, K secretion could be inhibited by serosal bumetanide without altering Na absorption. In the presence of spironolactone, actinomycin D, or cycloheximide, aldosterone failed to stimulate both K secretion and Na absorption. A dose response to aldosterone provided an apparent Kd of 2.6 +/- 0.5 nM, consistent with a high-affinity receptor coupled to this secretory response. Stimulation by the K secretagogue epinephrine did not produce an additive increase in K secretion, suggesting that the same cell type responds to both aldosterone and epinephrine and that the protein induced by aldosterone was not one of the membrane proteins responsible for K secretion.


1983 ◽  
Vol 244 (2) ◽  
pp. G171-G182 ◽  
Author(s):  
M. J. Rutten ◽  
S. Ito

Guinea pig gastric mucosae stripped of their outer muscle layers were studied in Ussing chambers for up to 14 h. Ten minutes after the mucosae were mounted in the chamber, the electrical parameters were low but continued to rise over 90 min until steady-state potential difference (PD), resistance (R), and short-circuit current (Isc) were recorded. Morphological analysis during the first 10 min of the tissue in the chamber revealed gaps in the epithelium due to damaged cells. However, tissues examined after 20 min in the chamber showed little evidence of epithelial discontinuity. Thereafter, the initial rise in the electrical parameters was noted. After steady-state attainment, the lumen was exposed to 1.25 M NaCl for 5 min and then changed back to 150 mM NaCl. Ten minutes after washout and return to control solutions, the PD, R, and Isc had fallen to low values. At 30 min after washout of the NaCl, the PD, R, and Isc began to increase and after 2 h were back to control values. Morphological analysis of mucosae fixed up to 10 min after exposure to 1.25 M NaCl showed extensive damage and exfoliation of surface cells. However, by 30 min the epithelium was restored and had very few discontinuities, which was then followed by the return of the electrical parameters. The conclusions from these studies are 1) guinea pig gastric mucosae exposed to hypertonic NaCl on the luminal side will primarily result in surface epithelial cell destruction with an immediate drop in the transepithelial electrical values; 2) after return to isotonic saline the damaged mucosa can repair itself within minutes, which then allows the reestablishment of the transepithelial electrical parameters by 2 h; and 3) the good viability and reproducibility of this preparation present a suitable mammalian model system for the study of factors of mucosal repair.


2005 ◽  
Vol 288 (2) ◽  
pp. G337-G345 ◽  
Author(s):  
Michelle C. Buresi ◽  
Nathalie Vergnolle ◽  
Keith A. Sharkey ◽  
Catherine M. Keenan ◽  
Patricia Andrade-Gordon ◽  
...  

The proteinase-activated thrombin receptor-1 (PAR-1) belongs to a unique family of G protein-coupled receptors activated by proteolytic cleavage. We studied the effect of PAR-1 activation in the regulation of ion transport in mouse colon in vitro. Expression of PAR-1 in mouse colon was assessed by RT-PCR and immunohistochemistry. To study the role of PAR-1 activation in chloride secretion, mouse colon was mounted in Ussing chambers. Changes in short-circuit current ( Isc) were measured in tissues exposed to either thrombin, saline, the PAR-1-activating peptide TFLLR-NH2, or the inactive reverse peptide RLLFT-NH2, before electrical field stimulation (EFS). Experiments were repeated in the presence of either a PAR-1 antagonist or in PAR-1-deficient mice to assess receptor specificity. In addition, studies were conducted in the presence of chloride-free buffer or the muscarinic antagonist atropine to assess chloride dependency and the role of cholinergic neurons in the PAR-1-induced effect. PAR-1 mRNA was expressed in full-thickness specimens and mucosal scrapings of mouse colon. PAR-1 immunoreactivity was found on epithelial cells and on neurons in submucosal ganglia where it was colocalized with both VIP and neuropeptide Y. After PAR-1 activation by thrombin or TFLLR-NH2, secretory responses to EFS but not those to forskolin or carbachol were significantly reduced. The reduction in the response to EFS was not observed in the presence of the PAR-1 antagonist, in PAR-1-deficient mice, when chloride was excluded from the bathing medium, or when atropine was present. PAR-1 is expressed in submucosal ganglia in the mouse colon and its activation leads to a decrease in neurally evoked epithelial chloride secretion.


2004 ◽  
Vol 286 (5) ◽  
pp. G814-G821 ◽  
Author(s):  
Bi-Guang Tuo ◽  
Jimmy Y. C. Chow ◽  
Kim E. Barrett ◽  
Jon I. Isenberg

PKC has been shown to regulate epithelial Cl- secretion in a variety of models. However, the role of PKC in duodenal mucosal bicarbonate secretion is less clear. We aimed to investigate the role of PKC in regulation of duodenal mucosal bicarbonate secretion. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers using a pH-stat technique. PKC isoform expression and activity were assessed by Western blotting and in vitro kinase assays, respectively. PMA (an activator of PKC) alone had no effect on duodenal bicarbonate secretion or short-circuit current ( Isc). When PMA and dibutyryl-cAMP (db-cAMP) were added simultaneously, PMA failed to alter db-cAMP-stimulated duodenal bicarbonate secretion or Isc ( P > 0.05). However, a 1-h preincubation with PMA potentiated db-cAMP-stimulated duodenal bicarbonate secretion and Isc in a concentration-dependent manner (from 10-8 to 10-5M) ( P < 0.05). PMA preincubation had no effects on carbachol- or heat-stable toxin-stimulated bicarbonate secretion. Western blot analysis revealed that PKCα, -γ, -ϵ, -θ, -μ, and -ι/λ were expressed in murine duodenal mucosa. Ro 31–8220 (an inhibitor active against PKCϵ, -α, -β, and -γ), but not Gö 6983 (an inhibitor active against PKCα, -γ, -β, and -δ), reversed the potentiating effect of PMA on db-cAMP-stimulated bicarbonate secretion. PMA also time- and concentration-dependently increased the activity of PKCϵ, an effect that was prevented by Ro 31–8220 but not Gö 6983. These results demonstrate that activation of PKC potentiates cAMP-stimulated duodenal bicarbonate secretion, whereas it does not modify basal secretion. The effect of PKC on cAMP-stimulated bicarbonate secretion is mediated by the PKCϵ isoform.


1989 ◽  
Vol 66 (4) ◽  
pp. 1547-1552 ◽  
Author(s):  
M. Munakata ◽  
I. Huang ◽  
W. Mitzner ◽  
H. Menkes

We developed an in vitro system to assess the role of the epithelium in regulating airway tone using the intact guinea pig trachea (J. Appl. Physiol. 64: 466–471, 1988). This method allows us to study the response of the airway when its inner epithelial surface or its outer serosal surface is stimulated independently. Using this system we evaluated how the presence of intact epithelium can affect pharmacological responsiveness. We first examined responses of tracheae with intact epithelium to histamine, acetylcholine, and hypertonic KCl when stimulated from the epithelial or serosal side. We then examined the effect of epithelial denudation on the responses to these agonists. With an intact epithelium, stimulation of the inner epithelial side always caused significantly smaller changes in diameter than stimulation of the outer serosal side. After mechanical denudation of the epithelium, these differences were almost completely abolished. In the absence of intact epithelium, the trachea was 35-fold more sensitive to histamine and 115-fold more sensitive to acetylcholine when these agents were applied to the inner epithelial side. In addition, the presence of an intact epithelium almost completely inhibited any response to epithelial side challenge with hypertonic KCl. These results indicate that the airway epithelial layer has a potent protective role in airway responses to luminal side stimuli, leading us to speculate that changes in airway reactivity measured in various conditions including asthma may result in part from changes in epithelial function.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


2002 ◽  
Vol 282 (6) ◽  
pp. G972-G980 ◽  
Author(s):  
Paula Miceli ◽  
Gerald P. Morris ◽  
Wallace K. MacNaughton ◽  
Stephen Vanner

The efferent secretomotor activity of capsaicin-sensitive nerves was monitored during the evolution of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced ileitis in the guinea pig by recording changes in short-circuit current (Δ I sc) in response to capsaicin, substance P (SP), and carbachol. Submucosal-mucosal preparations mounted in standard Ussing chambers were studied at time 0, at 8 h, and 1, 3, 5, 7, 14, and 30 days following the intraluminal instillation of TNBS or saline. Maximal Δ I scresponses to capsaicin were dramatically attenuated (54%) by 24 h. By day 7, SP- and TTX-insensitive carbachol-stimulated Δ I sc were also significantly reduced. Similar attenuation in capsaicin and carbachol responses was observed in jejunal tissue 20 cm proximal to the inflamed site at day 7. These studies demonstrate that efferent secretomotor function of capsaicin-sensitive nerves is maintained early in TNBS ileitis but significantly reduced by 24 h. By day 7, defects in enterocyte secretory function at inflamed and noninflamed sites also occurred, an effect that may be mediated by circulating cytokines.


1991 ◽  
Vol 260 (5) ◽  
pp. G703-G710 ◽  
Author(s):  
B. R. Grubb

In the fowl cecum in vitro, the influence of glucose and the three most prevalent naturally occurring volatile fatty acids (acetate, propionate, butyrate) on short-circuit current (Isc), electrical resistance, and transport of Na and Cl was determined. When glucose, acetate, or butyrate was present, ion transport was characterized by electrogenic Na absorption, greater than 65% of which was amiloride inhibitable, and Cl secretion, which also was electrogenic. Isc could be completely accounted for by net fluxes of Na and Cl. When glucose, acetate, or butyrate (10 mM both sides) was included in the incubation medium, cecal tissue maintained its Isc and a constant rate of net Na absorption and Cl secretion for a 5-h period. When no substrate was present or propionate was included in the medium, a marked fall in Isc and net Na and Cl fluxes was seen. Glucose caused an increase in Isc when added only to the serosal side. As 3-O-methylglucose (not metabolized) was not effective in stimulating Isc of the cecum (serosal or mucosal addition), it appeared that glucose increased Isc by acting as an energy substrate for active Na transport. Acetate and butyrate appeared to be equally effective in stimulating Na transport and Isc when placed on either side of the membrane. When the preparation was supplied with glucose (serosal side) and acetate was added to the mucosal side, no further stimulation of Isc occurred. Thus it appeared that acetate and butyrate were acting as substrates for active Na transport rather than stimulating Na transport by some other mechanism such as a cotransport with Na.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 244 (4) ◽  
pp. G421-G425 ◽  
Author(s):  
H. J. Cooke ◽  
M. Montakhab ◽  
P. R. Wade ◽  
J. D. Wood

Transmural movement of 5-hydroxytryptamine (5-HT) was studied in guinea pig small intestine in vitro in order to test the hypothesis that there is mucosal 5-HT barrier in this species. Segments of guinea pig ileum were mounted as flat sheets in flux chambers or were everted and perfused. Mucosal-to-serosal (Jm leads to s) and serosal-to-mucosal (Js leads to m) fluxes of 5-HT were measured in the absence of 5-HT gradients and under open- or short-circuited conditions. The results indicated that substantial transmural movement of 5-HT occurred in these preparations. Both Jm leads to s and Js leads to m were linear functions of the 5-HT concentration over a range of 1-30 microM and were not significantly different in the two directions. Addition of 2,4-dinitrophenol to both sides of the tissue reduced short-circuit current to zero and increased both tissue conductance and unidirectional 5-HT fluxes. These results suggested that the 5-HT fluxes across the guinea pig ileum occurred by passive mechanisms. Fluxes of 5-HT across preparations with the muscularis externa removed were not significantly different from fluxes across intact preparations. Mucosal-to-serosal 5-HT fluxes in everted perfused sacs were comparable with fluxes in the flat-sheet preparations. The data are not consistent with the hypothesis of a "tissue barrier" that functions to prevent 5-HT from reaching serotonergic receptors on enteric ganglion cells or enteroendocrine cells.


1976 ◽  
Vol 231 (1) ◽  
pp. 275-282 ◽  
Author(s):  
TA Brasitus ◽  
M Field ◽  
DV Kimberg

Stimulation of alpha-adrenergic and muscarinic cholinergic receptors in rabbit ileal mucosa in vitro produced 5- to 15-fold increases in cyclic GMP (cGMP) concentration that were maximal within 2 min and gone within 30 min. Cholecystokinin octapeptide and insulin caused similar increases in cGMP. None of these agents affected cAMP. The epinephrine-induced increase in cGMP was blocked by atropine at 100 but not at 1 muM concentration. Epinephrine stimulates active NaCl absorption and decreases short-circuit current (SCC) in vitro, the latter effect due to inhibition of HCO3 secretion. Atropine (100 muM) blocked the former but not the latter effect of epinephrine. In vitro additions of several concentrations of cGMP and 8-bromo-cGMP did not decrease SCC or alter Na fluxes. Thus, changes in cGMP concentration have been directly correlated with changes in active absorption of NaCl, but a causal relationship has not been proven.


Sign in / Sign up

Export Citation Format

Share Document