high affinity receptor
Recently Published Documents


TOTAL DOCUMENTS

480
(FIVE YEARS 38)

H-INDEX

72
(FIVE YEARS 3)

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Daniela B. Vera ◽  
Allison N. Fredes ◽  
Maritza P. Garrido ◽  
Carmen Romero

Ovarian cancer is the most lethal gynecological neoplasm, and epithelial ovarian cancer (EOC) accounts for 90% of ovarian malignancies. The 5-year survival is less than 45%, and, unlike other types of cancer, the proportion of women who die from this disease has not improved in recent decades. Nerve growth factor (NGF) and tropomyosin kinase A (TRKA), its high-affinity receptor, play a crucial role in pathogenesis through cell proliferation, angiogenesis, invasion, and migration. NGF/TRKA increase their expression during the progression of EOC by upregulation of oncogenic proteins as vascular endothelial growth factor (VEGF) and c-Myc. Otherwise, the expression of most oncoproteins is regulated by microRNAs (miRs). Our laboratory group reported that the tumoral effect of NGF/TRKA depends on the regulation of miR-145 levels in EOC. Currently, mitochondria have been proposed as new therapeutic targets to activate the apoptotic pathway in the cancer cell. The mitochondria are involved in a myriad of functions as energy production, redox control, homeostasis of Ca+2, and cell death. We demonstrated that NGF stimulation produces an augment in the Bcl-2/BAX ratio, which supports the anti-apoptotic effects of NGF in EOC cells. The review aimed to discuss the role of mitochondria in the interplay between NGF/TRKA and miR-145 and possible therapeutic strategies that may decrease mortality due to EOC.


2021 ◽  
Vol 22 (22) ◽  
pp. 12481
Author(s):  
Preethi C. Karnam ◽  
Sergey A. Vishnivetskiy ◽  
Vsevolod V. Gurevich

Arrestins are a small family of proteins that bind G protein-coupled receptors (GPCRs). Arrestin binds to active phosphorylated GPCRs with higher affinity than to all other functional forms of the receptor, including inactive phosphorylated and active unphosphorylated. The selectivity of arrestins suggests that they must have two sensors, which detect receptor-attached phosphates and the active receptor conformation independently. Simultaneous engagement of both sensors enables arrestin transition into a high-affinity receptor-binding state. This transition involves a global conformational rearrangement that brings additional elements of the arrestin molecule, including the middle loop, in contact with a GPCR, thereby stabilizing the complex. Here, we review structural and mutagenesis data that identify these two sensors and additional receptor-binding elements within the arrestin molecule. While most data were obtained with the arrestin-1-rhodopsin pair, the evidence suggests that all arrestins use similar mechanisms to achieve preferential binding to active phosphorylated GPCRs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Susanne Prokop ◽  
Péter Ábrányi-Balogh ◽  
Benjámin Barti ◽  
Márton Vámosi ◽  
Miklós Zöldi ◽  
...  

AbstractImmunolabeling and autoradiography have traditionally been applied as the methods-of-choice to visualize and collect molecular information about physiological and pathological processes. Here, we introduce PharmacoSTORM super-resolution imaging that combines the complementary advantages of these approaches and enables cell-type- and compartment-specific nanoscale molecular measurements. We exploited rational chemical design for fluorophore-tagged high-affinity receptor ligands and an enzyme inhibitor; and demonstrated broad PharmacoSTORM applicability for three protein classes and for cariprazine, a clinically approved antipsychotic and antidepressant drug. Because the neurobiological substrate of cariprazine has remained elusive, we took advantage of PharmacoSTORM to provide in vivo evidence that cariprazine predominantly binds to D3 dopamine receptors on Islands of Calleja granule cell axons but avoids dopaminergic terminals. These findings show that PharmacoSTORM helps to quantify drug-target interaction sites at the nanoscale level in a cell-type- and subcellular context-dependent manner and within complex tissue preparations. Moreover, the results highlight the underappreciated neuropsychiatric significance of the Islands of Calleja in the ventral forebrain.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3095
Author(s):  
Ching-Chia Huang ◽  
Kuo-Hsuan Chang ◽  
Ya-Jen Chiu ◽  
Yi-Ru Chen ◽  
Tsai-Hui Lung ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease presenting with progressive memory and cognitive impairments. One of the pathogenic mechanisms of AD is attributed to the aggregation of misfolded amyloid β (Aβ), which induces neurotoxicity by reducing the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TRKB) and increasing oxidative stress, caspase-1, and acetylcholinesterase (AChE) activities. Here, we have found the potential of two novel synthetic coumarin derivatives, ZN014 and ZN015, for the inhibition of Aβ and neuroprotection in SH-SY5Y neuroblastoma cell models for AD. In SH-SY5Y cells expressing the GFP-tagged Aβ-folding reporter, both ZN compounds reduced Aβ aggregation, oxidative stress, activities of caspase-1 and AChE, as well as increased neurite outgrowth. By activating TRKB-mediated extracellular signal-regulated kinase (ERK) and AKT serine/threonine kinase 1 (AKT) signaling, these two ZN compounds also upregulated the cAMP-response-element binding protein (CREB) and its downstream BDNF and anti-apoptotic B-cell lymphoma 2 (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of ZN014 and ZN015. A parallel artificial membrane permeability assay showed that ZN014 and ZN015 could be characterized as blood–brain barrier permeable. Our results suggest ZN014 and ZN015 as novel therapeutic candidates for AD and demonstrate that ZN014 and ZN015 reduce Aβ neurotoxicity via pleiotropic mechanisms.


2021 ◽  
Author(s):  
Preksha Bhagchandani ◽  
Charles Chang ◽  
Weichen Zhao ◽  
Luiza Ghila ◽  
Pedro L. Herrera ◽  
...  

Advances in organ transplantation benefit from development of genetically inbred animal strains with defined histocompatibility and cell-specific markers to distinguish donor and host cell subsets. For studies of pancreatic islet transplantation tolerance in diabetes, an invariant method to ablate host β cells and induce diabetes would provide an immense additional advantage. Here we detail development and use of B6 RIP-DTR mice , an immunocompetent line permitting diabetes induction with 100% penetrance. This inbred line is homozygous for the C57BL/6J major histocompatibility complex (MHC) haplotype and expresses the mutant CD45.1 allele in the hematopoietic lineage. β cell-specific expression of a high-affinity receptor for diphtheria toxin (DT) permits experimental β cell ablation and diabetes induction after DT administration. Diabetes reversal for over one year was achieved after transplantation with congenic C57BL/6J islets, but not with MHC-mismatched BALB/c islets, which were rapidly rejected. In summary, the generation of a C57BL/6J congenic line harboring the CD45.1 allele and Ins2-HBEGF transgene should advance studies of islet transplantation tolerance and mechanisms to improve islet engraftment and function, thereby optimizing development of cell replacement strategies for diabetes mellitus.


2021 ◽  
Vol 22 (17) ◽  
pp. 9176
Author(s):  
Irit Shefler ◽  
Pazit Salamon ◽  
Yoseph A. Mekori

Mast cells are major effector cells in eliciting allergic responses. They also play a significant role in establishing innate and adaptive immune responses, as well as in modulating tumor growth. Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation, mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor progression. Mast cells are also affected by EVs derived from other cells in the immune system or in the tumor microenvironment, which may activate mast cells to release different mediators. In this review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs and their role in allergic responses, inflammation, and tumor progression. Understanding the release, composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to developing novel therapeutic approaches.


2021 ◽  
Vol 22 (15) ◽  
pp. 7944
Author(s):  
Anil Annamneedi ◽  
Miguel del Angel ◽  
Eckart D. Gundelfinger ◽  
Oliver Stork ◽  
Gürsel Çalışkan

A presynaptic active zone organizer protein Bassoon orchestrates numerous important functions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adulthood. We further provide evidence for a potential involvement of tropomyosin-related kinase B (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in adolescent (~4–5 weeks-old) mice. Electrophysiological analysis reveals increased field-excitatory-postsynaptic-potentials (fEPSPs) in the DG of the adult, but not in adolescent BsnEmx1cKO mice. In line with an increased TrkB expression during adulthood in BsnEmx1cKO, blockade of TrkB normalizes the increased synaptic excitability in the DG during adulthood, while no such effect was observed in adolescence. Accordingly, neurogenesis, which has previously been found to be increased in adult BsnEmx1cKO mice, was unaffected at adolescent age. Our results suggest that Bassoon plays a crucial role in the TrkB-dependent postnatal maturation of the hippocampus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Nencini ◽  
Michael Morgan ◽  
Jenny Thai ◽  
Andrew I. Jobling ◽  
Stuart B. Mazzone ◽  
...  

Piezo2 is a mechanically gated ion-channel that has a well-defined role in innocuous mechanical sensitivity, but recently has also been suggested to play a role in mechanically induced pain. Here we have explored a role for Piezo2 in mechanically evoked bone nociception in Sprague Dawley rats. We have used an in vivo electrophysiological bone-nerve preparation to record the activity of single Aδ bone afferent neurons in response to noxious mechanical stimulation, after Piezo2 knockdown in the dorsal root ganglia with intrathecal injections of Piezo2 antisense oligodeoxynucleotides, or in control animals that received mismatch oligodeoxynucleotides. There were no differences in the number of Aδ bone afferent neurons responding to the mechanical stimulus, or their threshold for mechanical activation, in Piezo2 knockdown animals compared to mismatch control animals. However, bone afferent neurons in Piezo2 knockdown animals had reduced discharge frequencies and took longer to recover from stimulus-evoked fatigue than those in mismatch control animals. Piezo2 knockdown also prevented nerve growth factor (NGF)-induced sensitization of bone afferent neurons, and retrograde labeled bone afferent neurons that expressed Piezo2 co-expressed TrkA, the high affinity receptor for NGF. Our findings demonstrate that Piezo2 contributes to the response of bone afferent neurons to noxious mechanical stimulation, and plays a role in processes that sensitize them to mechanical stimulation.


2021 ◽  
Author(s):  
Jiajia Xu ◽  
Zhao Li ◽  
Robert J. Tower ◽  
Stefano Negri ◽  
Yiyun Wang ◽  
...  

Tissue repair relies on the coordination of mesenchymal precursor cells (MPCs) which migrate into the injury site, along with the invasion of blood vessels and sensory nerves. Our prior observations found that the neurotrophin Nerve growth factor (NGF) regulates sensory nerve ingrowth to skeletal repair sites via its high-affinity receptor. A body of work in cancer biology suggest that neurotrophins also engage their low-affinity receptor p75 to mediate cellular migration. Here, we observed conditional deletion of p75 in MPCs or osteoblasts to disrupt bone repair independent of neurovascular ingrowth. Single cell sequencing identified defects in migration and wound healing among MPC populations. Deletion of Ngf among myeloid cells phenocopied p75 conditional deletion animals. In vitro studies confirmed a myeloid-to-mesenchymal NGF-p75 axis which operates to induce cellular migration. Together, our data suggest a direct effect of myeloid-derived NGF on progenitor cells, in parallel to sensory nerve recruitment, required for injury repair.


Sign in / Sign up

Export Citation Format

Share Document