Reversible disassembly of an intestinal epithelial monolayer by prolonged exposure to phorbol ester

1994 ◽  
Vol 266 (2) ◽  
pp. G214-G221 ◽  
Author(s):  
G. Hecht ◽  
B. Robinson ◽  
A. Koutsouris

This article describes a model of reversible disassembly of a cultured human intestinal epithelial monolayer by prolonged exposure to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Prolonged phorbol ester exposure reduces protein kinase C (PKC) levels in numerous cell types including T84, as shown here. Under PKC-downregulated conditions, T84 monolayers, which simulate the highly organized structure of native intestinal crypt cells, become disassembled into 2 or 3 layers of rounded cells. Proliferation does not account for these morphological changes as assessed by thymidine incorporation studies. The effects of structural disorganization on epithelial barrier function was also examined. The permeability of disassembled monolayers was significantly greater than that of controls. Flux studies localized the permeability defect to the tight junction. PKC-associated alterations in the perijunctional ring of actin and myosin, one of the putative regulators of flow across the tight junction, were found to correlate with the observed functional changes. Most interesting was the fact that monolayer reassembly to the original columnar epithelial phenotype and reestablishment of barrier function occurred upon normalization of PKC levels. This model of reversible monolayer disassembly will allow investigation into the relationship between epithelial structure and function and examination of factors that govern monolayer formation.

2008 ◽  
Vol 19 (9) ◽  
pp. 3701-3712 ◽  
Author(s):  
Jie Chen ◽  
Lan Xiao ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

The AP-1 transcription factor JunD is highly expressed in intestinal epithelial cells, but its exact role in maintaining the integrity of intestinal epithelial barrier remains unknown. The tight junction (TJ) protein zonula occludens (ZO)-1 links the intracellular domain of TJ-transmembrane proteins occludin, claudins, and junctional adhesion molecules to many cytoplasmic proteins and the actin cytoskeleton and is crucial for assembly of the TJ complex. Here, we show that JunD negatively regulates expression of ZO-1 and is implicated in the regulation of intestinal epithelial barrier function. Increased JunD levels by ectopic overexpression of the junD gene or by depleting cellular polyamines repressed ZO-1 expression and increased epithelial paracellular permeability. JunD regulated ZO-1 expression at the levels of transcription and translation. Transcriptional repression of ZO-1 by JunD was mediated through cAMP response element-binding protein-binding site within its proximal region of the ZO-1-promoter, whereas induced JunD inhibited ZO-1 mRNA translation by enhancing the interaction of the ZO-1 3′-untranslated region with RNA-binding protein T cell-restricted intracellular antigen 1-related protein. These results indicate that JunD is a biological suppressor of ZO-1 expression in intestinal epithelial cells and plays a critical role in maintaining epithelial barrier function.


2020 ◽  
Vol 31 (20) ◽  
pp. 2249-2258
Author(s):  
Alexander S. Dowdell ◽  
Ian M. Cartwright ◽  
Matthew S. Goldberg ◽  
Rachael Kostelecky ◽  
Tyler Ross ◽  
...  

The transcription factor hypoxia-inducible factor (HIF) mediates adaptation to hypoxia. We found that HIF regulates the autophagy protein ATG9A in intestinal epithelial cells. Subsequent knockdown of ATG9A resulted in tight junction mislocalization and cytoskeletal defects. These results suggest a link among the hypoxia response, autophagy, and junctional biogenesis.


2005 ◽  
Vol 288 (6) ◽  
pp. G1159-G1169 ◽  
Author(s):  
Xin Guo ◽  
Jaladanki N. Rao ◽  
Lan Liu ◽  
Tongtong Zou ◽  
Kaspar M. Keledjian ◽  
...  

Occludin is an integral membrane protein that forms the sealing element of tight junctions and is critical for epithelial barrier function. Polyamines are implicated in multiple signaling pathways driving different biological functions of intestinal epithelial cells (IEC). The present study determined whether polyamines are involved in expression of occludin and play a role in intestinal epithelial barrier function. Studies were conducted in stable Cdx2-transfected IEC-6 cells (IEC-Cdx2L1) associated with a highly differentiated phenotype. Polyamine depletion by α-difluoromethylornithine (DFMO) decreased levels of occludin protein but failed to affect expression of its mRNA. Other tight junction proteins, zonula occludens (ZO)-1, ZO-2, claudin-2, and claudin-3, were also decreased in polyamine-deficient cells. Decreased levels of tight junction proteins in DFMO-treated cells were associated with dysfunction of the epithelial barrier, which was overcome by exogenous polyamine spermidine. Decreased levels of occludin in polyamine-deficient cells was not due to the reduction of intracellular-free Ca2+ concentration ([Ca2+]cyt), because either increased or decreased [Ca2+]cyt did not alter levels of occludin in the presence or absence of polyamines. The level of newly synthesized occludin protein was decreased by ∼70% following polyamine depletion, whereas its protein half-life was reduced from ∼120 min in control cells to ∼75 min in polyamine-deficient cells. These findings indicate that polyamines are necessary for the synthesis and stability of occludin protein and that polyamine depletion disrupts the epithelial barrier function, at least partially, by decreasing occludin.


Sign in / Sign up

Export Citation Format

Share Document