epithelial monolayer
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 19)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Christian M Cammarota ◽  
Nicole S Dawney ◽  
Qingyuan Jia ◽  
Maren M Jung ◽  
Joseph A Glichowski ◽  
...  

Organ surfaces are lined by epithelial monolayers - sheets of cells that are one-cell thick. This architecture underlies tissue function, and its loss is associated with disease, including cancer. Studies of in-plane epithelial cell behaviors show that a developing epithelium behaves as a fluid in respect to the tissue plane, and can therefore readily adapt to varying mechanical influences during morphogenesis. We asked the question of how monolayer architecture is achieved, and whether it demonstrates the same fluid behavior. To address this problem, we cultured MDCK (Madin-Darby Canine Kidney) cell layers at different densities and timepoints and analyzed their architectures using a novel tool, Automated Layer Analysis (ALAn), which we introduce here. Our experimental and theoretical results lead us to propose that epithelial monolayer architecture is governed by a balance of counteracting forces due to cell-cell and cell-substrate adhesion, and that this balance is influenced by cell density. MDCK cells do not undergo obvious rearrangement along the apical-basal axis; instead, cells that do not contact the substrate aggregate on top of the monolayer. Our findings therefore imply that monolayered architecture is under more rigid control than planar tissue shape in epithelia.


2021 ◽  
Vol 50 (8) ◽  
pp. 765-773
Author(s):  
Woo Sung Park ◽  
Kyung Ah Koo ◽  
Hye-Jin Kim ◽  
Ji-Min Kwon ◽  
Dong-Min Kang ◽  
...  

Author(s):  
Wies T. M. van Dooremalen ◽  
Merel Derksen ◽  
Jamie Lee Roos ◽  
Celia Higuera Barón ◽  
Carla S. Verissimo ◽  
...  

Author(s):  
Kourtney P. Nickerson ◽  
Alejandro Llanos-Chea ◽  
Laura Ingano ◽  
Gloria Serena ◽  
Alba Miranda-Ribera ◽  
...  

While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions and, thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections.


2021 ◽  
Vol 15 (Supplement_1) ◽  
pp. S182-S183
Author(s):  
S Deleu ◽  
K Arnauts ◽  
K Machiels ◽  
G R B Huys ◽  
J Thevelein ◽  
...  

Abstract Background Human organoid-based intestinal monolayer cultures provide an interesting tool to preclinically assess new therapeutic properties in inflammatory bowel disease (IBD). Recently, short-chain fatty acids (SCFA) such as acetate and butyrate have gained interest for their potential beneficial effects in IBD therapy. Most studies have focused on butyrate, given its beneficial effects on gut microbiome composition, intestinal barrier function and the immune system1. Effects of acetate are less well known, despite its lower toxicity to epithelial cells and its potential to support growth of butyrate-producing bacteria by metabolic cross-feeding2. In fact, a recent report suggested that the probiotic potential of Saccharomyces cerevisiae var. boulardii might be related to its high acetic acid production3. We here studied the effect of acetate on organoid-derived epithelial monolayer cultures from ulcerative colitis (UC) patients. Methods Colonic biopsies were obtained from non-inflamed regions in 3 patients with UC. Crypts were isolated, cultured and expanded as 3D-organoids. These organoids were then dissociated and transferred to transwell inserts as monolayer cultures. Upon confluency of the monolayer, evaluated by Transepithelial electrical resistance (TEER), cells were basolaterally stimulated with control medium (CTRL) or an inflammatory mix (INFL) containing 100 ng/ml TNF-α, 20 ng/ml IL-1β and 1 µg/ml Flagellin (Fig. 1). After 24h, cells were apically stimulated with control medium or high acetate (HA) (100mM). TEER was measured at 0, 24 and 48h stimulation. After 48h, cells were subjected to RNA extraction followed by reverse transcriptase qPCR targeting a selection of key diagnostic marker genes. The apical and basolateral media were collected for cytokine determination by Mesoscale (Proinflammatory panel 1). Data were analyzed using GraphPad Prism 9 (D’Agostino & Pearson test for normality followed by a Friedman test). Results A protective effect (Fig. 2) of high acetate administration on TEER values (HA vs INFL: p=0˒017) was observed, together with a trend towards decrease in IL8 (p=0˒11), TNFA (INFL vs INFL+HA: p=0˒68) and CLDN2 (CTRL vs HA: p=0˒03). Moreover, this was confirmed by a decrease of most proinflammatory cytokines (Fig. 3) in the apical and basolateral media upon HA stimulation e.g., IFN-γ (INFL vs INFL+HA: p=0˒25) and IL 10 (CTRL vs HA: p=0˒11). Conclusion In this patient-derived human epithelial cell culture model, a protective effect of high acetate administration on TEER-values, gene expression and cytokine production was observed. Ongoing experiments are expanding the number of patients to 10. References


2021 ◽  
Vol 7 (11) ◽  
pp. eabe1640
Author(s):  
Yung Su Kim ◽  
Rui Fan ◽  
Ludmila Kremer ◽  
Nannette Kuempel-Rink ◽  
Karina Mildner ◽  
...  

During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity’s function and mechanism of formation have so far been obscure. Through investigating the cavity formation, we found that in the epiblast, the process of lumenogenesis is driven by reorganization of intercellular adhesion, vectoral fluid transport, and mitotic paracellular water influx from the blastocoel into the emerging proamniotic cavity. By experimentally blocking lumenogenesis, we found that the proamniotic cavity functions as a hub for communication between the early lineages, enabling proper growth and patterning of the postimplantation embryo.


2020 ◽  
Vol 125 (8) ◽  
Author(s):  
S. Tlili ◽  
M. Durande ◽  
C. Gay ◽  
B. Ladoux ◽  
F. Graner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document