Differential expression of cysteine-rich intestinal protein in liver and intestine in CCl4-induced inflammation

1996 ◽  
Vol 270 (4) ◽  
pp. G613-G618 ◽  
Author(s):  
C. Khoo ◽  
N. A. Hallquist ◽  
D. A. Samuelson ◽  
R. J. Cousins

Cysteine-rich intestinal protein (CRIP) is a double zinc finger (LIM domain) protein that is developmentally regulated but has an unknown function. CRIP is highly expressed in the intestine, but expression is low in liver. To determine if CRIP expression is regulated under altered physiological status, we used CCl4-induced injury as a model to produce hepatic injury and systemic effects associated with inflammation. Since CRIP is a zinc finger protein and zinc decreases the hepatic response to CCl4, the effect of supplemental dietary zinc (300 mg/kg diet) was also examined. Our results show that this supplemental level of dietary zinc did not affect the index of hepatic injury (plasma alanine aminotransferase), indicating zinc did not have a protective effect. Liver CRIP mRNA increased with CCl4 and CRIP protein was shown by immunohistochemistry to be localized in hepatocytes near the vascular supply. In the intestine, CCl4 caused a transient decrease in CRIP mRNA, but supplemental dietary zinc treatment prevented this decrease. These current results show that CRIP expression changes in response to cellular damage due to acute hepatic injury and are consistent with a functional role for CRIP in proliferation, differentiation, or turnover.

2011 ◽  
Vol 286 (23) ◽  
pp. 20152-20162 ◽  
Author(s):  
Alexandra S. Ling ◽  
James R. Trotter ◽  
Edward F. Hendriks

2016 ◽  
Vol 28 (2) ◽  
pp. 203
Author(s):  
S. E. Dickinson ◽  
J. A. Green ◽  
T. W. Geary ◽  
K. G. Pohler ◽  
G. A. Bridges ◽  
...  

Inadequate oocyte competence is a potential explanation for reduced pregnancy rates and(or) embryonic/fetal mortality when small dominant follicles are induced to ovulate prematurely with gonadotropin releasing hormone (GnRH). Our hypothesis was that the physiological status of an ovulatory follicle has a direct effect on competence of the oocyte and resulting embryo. The objective was to determine if the transcriptome of oocytes differ depending on whether they are collected from small or large dominant follicles following a GnRH-induced gonadotropin surge. Suckled beef cows (n = 350) were pre-synchronized with a 5-day CIDR protocol. Following pre-synchronization, GnRH1 was administered on Day –9, prostaglandin F on Day –2, GnRH2 (to initiate the ovulatory process) on Day 0, and dominant follicles were transvaginally aspirated on Day 1 before follicular rupture. On Day 0, cows were divided into small (<11.7 mm; no oestrus expression), or large (>12.5 mm; no oestrus expression) groups based on dominant follicle diameter. Oocytes were individually collected after aspiration, and RNA was later extracted from pools of 4 oocytes (n = 6 oocyte pools from both small and large follicles) and sequenced on an Illumina HiSEqn 2000 (single reads, 100 bases; Illumina Inc., San Diego, CA, USA). The sequences were tiled against a ~23 500 member bovine transcript reference obtained from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Tiling to target transcripts required a minimum match of 50 bases with at least 96% identity. Tiling counts were displayed as reads per kilobase of transcript per million mapped reads (RPKM) values, which were obtained by correcting for the length of each target (in kb) and the number of total tiled reads (in millions). Differences between groups were defined by two-tailed t-test and gene lists were selected based on P-values <0.02. Numerous differences in transcript abundance were characterised between oocytes from small and large dominant follicles. Follistatin-like 5 expression was increased (P < 0.02) in oocytes collected from large dominant follicles compared with oocytes collected from small dominant follicles. Several genes were associated with the ubiquitin pathway (e.g. ubiquitin conjugating enzyme, ubiquitin like protein-7) and were up-regulated (P < 0.02) in oocytes from large versus small dominant follicles. In addition, 4 members of the zinc finger protein family were up-regulated (P < 0.02) and 4 members were down-regulated (P < 0.02) in oocytes from large compared with small dominant follicles. In summary, some of the genes that were highly differentially regulated in bovine oocytes between small and large dominant follicles included members of the zinc finger and ubiquitin pathways, which may reflect differences in transcriptional regulation and protein turnover, respectively, between oocytes collected from large and small follicles. Study was supported by AFRI Grant no. 2013–67015–21076 from the USDA National Institute of Food and Agriculture (Washington, DC).


2021 ◽  
Vol 22 (8) ◽  
pp. 4197
Author(s):  
Shiyang Zhang ◽  
Junjie Liu ◽  
Guixian Zhong ◽  
Bo Wang

The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.


1997 ◽  
Vol 15 (7) ◽  
pp. 891-899 ◽  
Author(s):  
Kevin G. Becker ◽  
Insong J. Lee ◽  
James W. Nagle ◽  
Rachel D. Canning ◽  
Ameer M. Gado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document