scholarly journals Intracellular calcium dynamics at the core of endocardial stationary spiral waves in Langendorff-perfused rabbit hearts

2008 ◽  
Vol 295 (1) ◽  
pp. H297-H304 ◽  
Author(s):  
Liang Tang ◽  
Gyo-Seung Hwang ◽  
Hideki Hayashi ◽  
Juan Song ◽  
Masahiro Ogawa ◽  
...  

In vitro models of sustained monomorphic ventricular tachycardia (MVT) are rare and do not usually show spiral reentry on the epicardium. We hypothesized that MVT is associated with the spiral wave in the endocardium and that this stable reentrant propagation is supported by a persistently elevated intracellular calcium (Cai) transient at the core of the spiral wave. We performed dual optical mapping of transmembrane potential ( Vm) and Cai dynamics of the right ventricular (RV) endocardium in Langendorff-perfused rabbit hearts ( n = 12). Among 64 induced arrhythmias, 55% were sustained MVT (>10 min). Eighty percent of MVT showed stationary spiral waves (>10 cycles, cycle length: 128 ± 14.6 ms) in the endocardial mapped region, anchoring to the anatomic discontinuities. No reentry activity was observed in the epicardium. During reentry, the amplitudes of Vm and Cai signals were higher in the periphery and gradually decreased toward the core. At the core, maximal Vm and Cai amplitudes were 42.95 ± 5.89% and 43.95 ± 9.46%, respectively, of the control ( P < 0.001). However, the trough of the Vm and Cai signals at the core were higher than those in the periphery, indicating persistent Vm and Cai elevations during reentry. BAPTA-AM, a calcium chelator, significantly reduced the maximal Cai transient amplitude and prevented sustained MVT and spiral wave formation in the mapped region. These findings indicate that endocardial spiral waves often anchor to anatomic discontinuities causing stable MVT in normal rabbit ventricles. The spiral core is characterized by diminished Vm and Cai amplitudes and persistent Vm and Cai elevations during reentry.

1993 ◽  
Vol 613 (1) ◽  
pp. 156-159 ◽  
Author(s):  
Myung H. Kim-Lee ◽  
Bradford T. Stokes ◽  
Douglas K. Anderson

Author(s):  
Shreyas Punacha ◽  
Sebastian Berg ◽  
Anupama Sebastian ◽  
Valentin I. Krinski ◽  
Stefan Luther ◽  
...  

Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.


2008 ◽  
Vol 104 (6) ◽  
pp. 1761-1777 ◽  
Author(s):  
Jinxiang Xi ◽  
P. Worth Longest ◽  
Ted B. Martonen

The extent to which laryngeal-induced flow features penetrate into the upper tracheobronchial (TB) airways and their related impact on particle transport and deposition are not well understood. The objective of this study was to evaluate the effects of including the laryngeal jet on the behavior and fate of inhaled aerosols in an approximate model of the upper TB region. The upper TB model was based on a simplified numerical reproduction of a replica cast geometry used in previous in vitro deposition experiments that extended to the sixth respiratory generation along some paths. Simulations with and without an approximate larynx were performed. Particle sizes ranging from 2.5 nm to 12 μm were considered using a well-tested Lagrangian tracking model. The model larynx was observed to significantly affect flow dynamics, including a laryngeal jet skewed toward the right wall of the trachea and a significant reverse flow in the left region of the trachea. Inclusion of the laryngeal model increased the tracheal deposition of nano- and micrometer particles by factors ranging from 2 to 10 and significantly reduced deposition in the first three bronchi of the model. Considering localized conditions, inclusion of the laryngeal approximation decreased deposition at the main carina and produced a maximum in local surface deposition density in the lobar-to-segmental bifurcations (G2–G3) for both 40-nm and 4-μm aerosols. These findings corroborate previous experiments and highlight the need to include a laryngeal representation in future computational and in vitro models of the TB region.


2010 ◽  
Vol 20 (4) ◽  
pp. 045104 ◽  
Author(s):  
Emily Harvey ◽  
Vivien Kirk ◽  
Hinke M. Osinga ◽  
James Sneyd ◽  
Martin Wechselberger

Sign in / Sign up

Export Citation Format

Share Document