Metabolic communication from cardiac myocytes to vascular endothelial cells

2005 ◽  
Vol 288 (5) ◽  
pp. H2232-H2237 ◽  
Author(s):  
Anna K. Brzezinska ◽  
Daphne Merkus ◽  
William M. Chilian

The endothelium releases substances that affect both vascular and cardiac myocytes. However, under conditions of augmented metabolic demands and cardiac work, signals from the cardiac myocytes may be critical for the endothelium to fulfill its secretory and regulatory function in the vascular bed. Therefore, we hypothesized that cardiac myocytes produce substances that alter the resting membrane potential of endothelial cells and thus vascular tone. Isolated rat cardiac myocytes were electrically stimulated at the rate of 0 and 400 beats/min (Po2 = 150 mmHg), and supernatants were collected from each group (Sup-0; control) and (Sup-400) and used within 6 mo. These supernatants were applied to human coronary endothelial cells that were subsequently analyzed by using the whole cell and cell-attached patch-clamp modes. Sup-0 had no effect on the whole cell current and the zero-current potential. The Sup-0 from myocytes treated with aprotinin, an inhibitor of kallikrein and serine protease, reduced whole cell current between −120 and −60 mV. Sup-400 depolarized endothelial cells from the resting membrane potential of −45 to −5 mV ( P < 0.05), increased the magnitude of an inward current, and activated an outward current. Moreover, Sup-400 cells assayed in cell-attached patches increased single channel amplitude and the probability of a channel being in the open state. These effects were reversed by the Sup-400 from aprotinin-treated cells. We conclude that under certain metabolic conditions, isolated cardiac myocytes produce and release vasoactive substances that alter the function of K+ channels in vascular endothelial cells. Thus cardiac myocytes seem to communicate metabolic information to the endothelium, which could potentially influence vascular tone.

2005 ◽  
Vol 289 (6) ◽  
pp. H2379-H2386 ◽  
Author(s):  
Anna K. Brzezinska ◽  
Nicole Lohr ◽  
William M. Chilian

Vascular dysfunction is a hallmark of many diseases, including coronary heart disease, stroke, and diabetes. The underlying mechanisms of these disorders are intimately associated with an increase in oxidative stress and excess generation of reactive oxygen species. Here, we report that the anionic free radical, superoxide (O2−·), directly affects the function of ion channels in vascular endothelial cells. Vascular endothelial cells were exposed to O2−· under physiological, symmetrical chloride and chloride-free conditions. Superoxide was generated from the reaction of xanthine (0.2 mM) and xanthine oxidase (0.1, 1, and 10 mU/ml) while its effects were determined with the whole cell mode of the patch-clamp technique. Inhibitors of K+ and Cl− channels were used to determine the role of these ion channels in mediating the electrophysiological effects of superoxide. The addition of O2−· caused a dose-dependent depolarization of endothelial cells and activation of the whole cell current. Activation of superoxide-dependent current was observed in the presence of inhibitors of K+ channels, Ba2+ (100 μM) or iberiotoxin (100 nM), and was not affected by inhibitors of nonselective cation channels, La3+, or by inhibition of the Cl−/HCO3− transporter by bumetanide. The inhibitors of the Cl− channel, NPPB (0.1 mM) or DIDS (100 μM), partially prevented activation of superoxide-dependent current but were unable to reverse it. The effects of superoxide on the amplitude of whole cell current were prevented and reversed by superoxide dismutase. Taken together, these results suggest that superoxide directly affects the function of ion channels in vascular endothelium but the mechanisms of its modulatory effects remain unresolved.


1984 ◽  
Vol 246 (6) ◽  
pp. H776-H783 ◽  
Author(s):  
K. P. Burton ◽  
J. M. McCord ◽  
G. Ghai

Oxygen-derived free radicals have been proposed as general mediators of tissue injury in a variety of disease states. Recent interest has focused on the possibility that free radicals may be involved in ischemic myocardial damage. However, the exact types of damage that result from myocardial exposure to free radicals remains to be established. The purpose of this study was to evaluate the effects of superoxide and hydroxyl radicals on myocardial structure and function in an isolated perfused rabbit interventricular septal preparation. Superoxide was generated by adding purine (2.3 mM) and xanthine oxidase (0.01 U/ml) to the physiological solutions perfusing the septa. Hydroxyl radical generation was catalyzed by the addition of 2.4 microM Fe3+-loaded transferrin to the system. Exposure of normal septa to superoxide-generating solutions resulted in the development of structural alterations in the vascular endothelium including the development of vacuoles. Membranous cellular debris was evident in the extracellular space and within the vessels. Cardiac myocytes showed evidence of mild alterations. Exposure of septa to solutions capable of generating hydroxyl radicals resulted in more extensive and severe damage. Vascular endothelial cells showed evidence of vacuoles or blebs and edema. Severe swelling of mitochondria was evident in cardiac myocytes and vascular endothelial cells. In addition, myocytes often showed blebbing of the basement membrane. Normal septa exposed to superoxide showed no significant decrease in developed tension, whereas hydroxyl radical exposure resulted in a significant decrease in myocardial function.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (1) ◽  
pp. C277-C293 ◽  
Author(s):  
Haroldo S. Silva ◽  
Adam Kapela ◽  
Nikolaos M. Tsoukias

Vascular endothelial cells (ECs) modulate smooth muscle cell (SMC) contractility, assisting in vascular tone regulation. Cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential ( Vm) play important roles in this process by controlling EC-dependent vasoactive signals and intercellular communication. The present mathematical model integrates plasmalemma electrophysiology and Ca2+ dynamics to investigate EC responses to different stimuli and the controversial relationship between [Ca2+]i and Vm. The model contains descriptions for the intracellular balance of major ionic species and the release of Ca2+ from intracellular stores. It also expands previous formulations by including more detailed transmembrane current descriptions. The model reproduces Vm responses to volume-regulated anion channel (VRAC) blockers and extracellular K+ concentration ([K+]o) challenges, predicting 1) that Vm changes upon VRAC blockade are [K+]o dependent and 2) a biphasic response of Vm to increasing [K+]o. Simulations of agonist-induced Ca2+ mobilization replicate experiments under control and Vm hyperpolarization blockade conditions. They show that peak [Ca2+]i is governed by store Ca2+ release while Ca2+ influx (and consequently Vm) impacts more the resting and plateau [Ca2+]i. The Vm sensitivity of rest and plateau [Ca2+]i is dictated by a [Ca2+]i “buffering” system capable of masking the Vm-dependent transmembrane Ca2+ influx. The model predicts plasma membrane Ca2+-ATPase and Ca2+ permeability as main players in this process. The heterogeneous Vm impact on [Ca2+]i may elucidate conflicting reports on how Vm influences EC Ca2+. The present study forms the basis for the development of multicellular EC-SMC models that can assist in understanding vascular autoregulation in health and disease.


2004 ◽  
Vol 286 (6) ◽  
pp. C1367-C1375 ◽  
Author(s):  
Deborah K. Lieu ◽  
Pamela A. Pappone ◽  
Abdul I. Barakat

Vascular endothelial cells (ECs) distinguish among and respond differently to different types of fluid mechanical shear stress. Elucidating the mechanisms governing this differential responsiveness is the key to understanding why early atherosclerotic lesions localize preferentially in arterial regions exposed to low and/or oscillatory flow. An early and very rapid endothelial response to flow is the activation of flow-sensitive K+ and Cl− channels that respectively hyperpolarize and depolarize the cell membrane and regulate several important endothelial responses to flow. We have used whole cell current- and voltage-clamp techniques to demonstrate that flow-sensitive hyperpolarizing and depolarizing currents respond differently to different types of shear stress in cultured bovine aortic ECs. A steady shear stress level of 10 dyn/cm2 activated both currents leading to rapid membrane hyperpolarization that was subsequently reversed to depolarization. In contrast, a steady shear stress of 1 dyn/cm2 only activated the hyperpolarizing current. A purely oscillatory shear stress of 0 ± 10 dyn/cm2 with an oscillation frequency of either 1 or 0.2 Hz activated the hyperpolarizing current but only minimally the depolarizing current, whereas a 5-Hz oscillation activated neither current. These results demonstrate for the first time that flow-activated ion currents exhibit different sensitivities to shear stress magnitude and oscillation frequency. We propose that flow-sensitive ion channels constitute components of an integrated mechanosensing system that, through the aggregate effect of ion channel activation on cell membrane potential, enables ECs to distinguish among different types of flow.


2020 ◽  
Author(s):  
Elis Torrezan-Nitao ◽  
Sean G Brown ◽  
Esperanza Mata-Martínez ◽  
Claudia L Treviño ◽  
Christopher Barratt ◽  
...  

Abstract STUDY QUESTION How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration ([Ca2+]i) signals (oscillations) in human sperm generated? SUMMARY ANSWER P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane potential (Vm)-sensitive Ca2+-influx through CatSper channels. WHAT IS KNOWN ALREADY A subset of human sperm display [Ca2+]i oscillations that regulate flagellar beating and acrosome reaction. Although pharmacological manipulations indicate involvement of stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used &gt;20 sperm donors and involved more than 100 separate experiments and analysis of more than 1000 individual cells over a period of 2 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current clamp. MAIN RESULTS AND THE ROLE OF CHANCE P4-induced [Ca2+]i oscillations originated in the flagellum, spreading to the neck and head (latency of 1–2 s). K+-ionophore valinomycin (1 µM) was used to investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium potential (EK) and was rapidly ‘reset’ upon manipulation of [K+]o. Pre-treatment of sperm with valinomycin ([K+]o = 5.4 mM) had no effect on the P4-induced [Ca2+] transient (P = 0.95; eight experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of oscillating cells (n = 257; P = 5 × 10−55 compared to control) and significantly reduced both the amplitude and frequency of persisting oscillations (P = 0.0001). Upon valinomycin washout, oscillations re-started in most cells. When valinomycin was applied in saline with elevated [K+], the inhibitory effect of valinomycin was reduced and was dependent on EK (P = 10−25). Amplitude and frequency of [Ca2+]i oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P &lt; 0.01). The CatSper inhibitor RU1968 (4.8 and 11 µM) caused immediate and reversible arrest of activity in 36% and 96% of oscillating cells, respectively (P &lt; 10−10). Quinidine (300 µM) which blocks the sperm K+ current (IKsper) completely, inhibited [Ca2+]i oscillations. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This was an in-vitro study and caution must be taken when extrapolating these results to in-vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS [Ca2+]i oscillations in human sperm are functionally important and their absence is associated with failed fertilisation at IVF. The data reported here provide new understanding of the mechanisms that underlie the regulation and generation (or failure) of these oscillations. STUDY FUNDING/COMPETING INTEREST(S) E.T.-N. was in receipt of a postgraduate scholarship from the CAPES Foundation (Ministry of Education, Brazil). E.M-M received travel funds from the Programa de Apoyo a los Estudios de Posgrado (Maestria y Doctorado en Ciencias Bioquimicas-Universidad Autonoma de Mexico). SGB and CLRB are recipients of a Chief Scientist Office (NHS Scotland) grant TCS/17/28. The authors have no conflicts of interest.


2002 ◽  
Vol 282 (2) ◽  
pp. C289-C301 ◽  
Author(s):  
Lisa M. Schwiebert ◽  
William C. Rice ◽  
Brian A. Kudlow ◽  
Amanda L. Taylor ◽  
Erik M. Schwiebert

ATP and its metabolites regulate vascular tone; however, the sources of the ATP released in vascular beds are ill defined. As such, we tested the hypothesis that all limbs of an extracellular purinergic signaling system are present in vascular endothelial cells: ATP release, ATP receptors, and ATP receptor-triggered signal transduction. Primary cultures of human endothelial cells derived from multiple blood vessels were grown as monolayers and studied using a bioluminescence detection assay for ATP released into the medium. ATP is released constitutively and exclusively across the apical membrane under basal conditions. Hypotonic challenge or the calcium agonists ionomycin and thapsigargin stimulate ATP release in a reversible and regulated manner. To assess expression of P2X purinergic receptor channel subtypes (P2XRs), we performed degenerate RT-PCR, sequencing of the degenerate P2XR product, and immunoblotting with P2XR subtype-specific antibodies. Results revealed that P2X4and P2X5are expressed abundantly by endothelial cell primary cultures derived from multiple blood vessels. Together, these results suggest that components of an autocrine purinergic signaling loop exist in the endothelial cell microvasculature that may allow for “self-regulation” of endothelial cell function and modulation of vascular tone.


1998 ◽  
Vol 82 (3) ◽  
pp. 328-336 ◽  
Author(s):  
Gilles Faury ◽  
Stéphanie Garnier ◽  
Anthony S. Weiss ◽  
Jean Wallach ◽  
Tamàs Fülöp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document