Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy

2005 ◽  
Vol 289 (6) ◽  
pp. H2401-H2408 ◽  
Author(s):  
Lazaros A. Nikolaidis ◽  
Dariush Elahi ◽  
You-Tang Shen ◽  
Richard P. Shannon

We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7–36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7–36) is rapidly degraded in the plasma to GLP-1-(9–36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7–36) (1.5 pmol·kg−1·min−1) to GLP-1-(9–36) (1.5 pmol·kg−1·min−1) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7–36) and GLP-1-(9–36) significantly reduced ( P < 0.01) LV end-diastolic pressure [GLP-1-(7–36), 28 ± 1 to 15 ± 2 mmHg; GLP-1-(9–36), 29 ± 2 to 16 ± 1 mmHg] and significantly increased ( P < 0.01) the first derivative of LV pressure [GLP-1-(7–36), 1,315 ± 81 to 2,195 ± 102 mmHg/s; GLP-1-(9–36), 1,336 ± 77 to 2,208 ± 68 mmHg] and cardiac output [GLP-1-(7–36), 1.5 ± 0.1 to 1.9 ± 0.1 l/min; GLP-1-(9–36), 2.0 ± 0.1 to 2.4 ± 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9–36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9–36) mimics the effects of GLP-1-(7–36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9–36) amide is an active peptide.

1978 ◽  
Vol 235 (6) ◽  
pp. H767-H775 ◽  
Author(s):  
G. A. Geffin ◽  
M. A. Vasu ◽  
D. D. O'Keefe ◽  
D. G. Pennington ◽  
A. J. Erdmann ◽  
...  

In dogs anesthetized with chloralose-urethan on right heart bypass, left ventricular (LV) performance was assessed at constant LV stroke work before and for up to 2.5 h after crystalloid hemodilution was established. Lowering the hematocrit from 43.3 +/- 1.3% to 13.6 +/- 1.7% (SE) did not significantly change LV end-diastolic pressure (LVEDP) initially. After 80 min LVEDP increased slightly by 1.7 +/- 0.6 cmH2O (P less than 0.05) at a stroke work of 17.3 +/- 2.3 g.m. The value of dP/dt did not change significantly throughout. When LV function curves were generated by increasing cardiac output, the stroke work attained at an LVEDP of 10 cmH2O decreased with hemodilution from 23.9 +/- 3.5 to 20.8 +/- 3.9 g.m (NS). LV wall water content increased with hemodilution, from which it could be calculated that there was an 18.6% increase in LV mass. Thus, despite an increase in LV external girth demonstrated by LV circumferential gauges, it is possible that increased wall thickness due to the water gain resulted in little change or an actual decrease in LV end-diastolic volume. Thus, profound hemodilution can be attained with only slight depression of LV performance.


1997 ◽  
Vol 87 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Iyad N. Jamali ◽  
Paul S. Pagel ◽  
Douglas A. Hettrick ◽  
Dermot Lowe ◽  
Judy R. Kersten ◽  
...  

Background The effects of triiodothyronine (T3) on systemic hemodynamics, myocardial contractility (preload recruitable stroke work slope; Mw), and left ventricular (LV) isovolumic relaxation (time constant; tau) were examined before and after the development of pacing-induced cardiomyopathy in conscious dogs. Methods Dogs (n = 8) were chronically instrumented for measurement of aortic and LV pressure, dP/dtmax, subendocardial segment length, and cardiac output. Dogs received escalating doses (0.2, 2.0, and 20.0 mg/kg, intravenous) of T3 over 5 min at 1-h intervals, and peak hemodynamic effects were recorded 10 min after each dose and 24 h after the final dose. Dogs were then continuously paced at 220-240 beats/min for 21 +/- 2 days. Pacing was temporarily discontinued after the development of severe LV dysfunction, and administration of T3 was repeated. Results T3 produced immediate and sustained (24 h) increases (P &lt; 0.05) in Mw and dP/dtmax in dogs before the initiation of pacing, consistent with a positive inotropic effect. No changes in tau occurred. Rapid ventricular pacing over 3 weeks increased baseline heart rate (sinus rhythm) and LV end-diastolic pressure, decreased mean arterial and LV systolic pressures, and caused LV systolic (decreases in Mw and dP/dtmax) and diastolic (increases in tau) dysfunction. T3 caused immediate and sustained increases in Mw (63 +/- 7 during control to 82 +/- 7 mmHg after the 2 mg/kg dose) and decreases in tau (65 +/- 8 during control to 57 +/- 6 ms after the 20 mg/kg dose), indicating that this hormone enhanced myocardial contractility and shortened LV relaxation, respectively, in the presence of chronic LV dysfunction. In contrast to the findings in dogs with normal LV function, T3 did not affect heart rate and calculated indices of myocardial oxygen consumption and reduced LV end-diastolic pressure (27 +/- 3 during control to 20 +/- 2 mmHg after the 2 mg/kg dose) in cardiomyopathic dogs. Conclusions The findings indicate that T3 produces favorable alterations in hemodynamics and modest positive inotropic and lusitropic effects in conscious dogs with LV dysfunction produced by rapid LV pacing.


Author(s):  
Ricardo Carnicer Hijazo ◽  
Drew Duglan ◽  
Klemen Ziberna ◽  
Alice Recalde ◽  
Svetlana Reilly ◽  
...  

Rationale: In diabetic patients, heart failure with predominant left ventricular (LV) diastolic dysfunction is a common complication for which there is no effective treatment. Oxidation of the nitric oxide synthase (NOS) co-factor tetrahydrobiopterin (BH4) and dysfunctional NOS activity have been implicated in the pathogenesis of the diabetic vascular and cardiomyopathic phenotype. Objective: Using mice models and human myocardial samples, we evaluated whether and by which mechanism increasing myocardial BH4 availability prevented or reversed LV dysfunction induced by diabetes. Methods and Results: In contrast to the vascular endothelium, BH4 levels, superoxide production and NOS activity (by liquid chromatography) did not differ in the LV myocardium of diabetic mice or in atrial tissue from diabetic patients. Nevertheless, the impairment in both cardiomyocyte relaxation and [Ca2+]i decay and in vivo LV function (echocardiography and tissue Doppler) that developed in wild type mice (WT) 12 weeks post-DM induction (streptozotocin, 42-45mg/kg) was prevented in mice with elevated myocardial BH4 content secondary to overexpression of GTP-cyclohydrolase 1 (mGCH1-Tg) and reversed in WT mice receiving oral BH4 supplementation from the 12th to the 18th week after DM induction. The protective effect of BH4 was abolished by CRISPR/Cas9-mediated knockout of neuronal NOS (nNOS) in mGCH1-Tg. In HEK cells, S-nitrosoglutathione led to a PKG-dependent increase in plasmalemmal density of the insulin-independent glucose transporter, GLUT-1. In cardiomyocytes, mGCH1 overexpression induced a NO/sGC/PKG-dependent increase in glucose uptake via GLUT-1, which was instrumental in preserving mitochondrial creatine kinase activity, oxygen consumption rate, LV energetics (by 31P MRS) and myocardial function. Conclusions: We uncovered a novel mechanism whereby myocardial BH4 prevents and reverses LV diastolic and systolic dysfunction associated with diabetes via a nNOS-mediated increase in non-insulin dependent myocardial glucose uptake and utilization. These findings highlight the potential of GCH1/BH4-based therapeutics in human diabetic cardiomyopathy.


1988 ◽  
Vol 255 (6) ◽  
pp. H1525-H1534 ◽  
Author(s):  
R. J. Gelpi ◽  
L. Hittinger ◽  
A. M. Fujii ◽  
V. M. Crocker ◽  
I. Mirsky ◽  
...  

To determine the alterations in left ventricular (LV) function and the mechanisms involved that occur during the development of perinephritic hypertension, dogs were instrumented with a miniature LV pressure transducer, aortic and left atrial catheters, and ultrasonic crystals to measure LV diameter in the short and long axes and wall thickness. At 2 wk after initiation of perinephritic hypertension, increases (P less than 0.05) were observed in LV systolic pressure, LV end-diastolic pressure, both short- and long-axis end-diastolic diameters, calculated LV end-diastolic volume, stroke volume, global average LV systolic wall stress, first derivative of LV pressure (LV dP/dt), and ejection fraction, whereas mean velocity of circumferential fiber shortening (Vcf) and rate of change of LV short-axis diameter (LV dD/dt) rose but not significantly. At three levels of matched preload and afterload induced by the administration of graded doses of phenylephrine, Vcf, LV dD/dt, and LV dP/dt increased in hypertension compared with the same levels of preload and afterload before hypertension. When the loading conditions in the normotensive and hypertensive dogs were matched, either after ganglionic blockade or beta-adrenergic blockade, both isovolumic and ejection-phase indexes of LV function remained similar before and after hypertension. Thus we conclude that 1) LV function in intact, conscious dogs with early hypertension is enhanced, and 2) the major mechanism for the increase in LV function involves the sympathetic nervous system.


2001 ◽  
Vol 281 (5) ◽  
pp. H1938-H1945 ◽  
Author(s):  
Chari Y. T. Hart ◽  
John C. Burnett ◽  
Margaret M. Redfield

Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (τ), and the first derivatives of LV pressure rise and fall (dP/d t max and dP/d t min, respectively). During echocardiography, HR was lower in XK than AV mice (250 ± 14 beats/min in XK vs. 453 ± 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 ± 0.08 mm in XK vs. 3.8 ± 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 ± 1.2% in XK vs. 40 ± 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 ± 24 beats/min) and XK (342 ± 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 ± 5 vs. 6.2 ± 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/d t max: 4,402 ± 798 vs. 8,250 ± 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (τ: 23 ± 2 vs. 14 ± 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.


2018 ◽  
Vol 315 (2) ◽  
pp. R191-R204 ◽  
Author(s):  
Cynthia M. F. Monaco ◽  
Paula M. Miotto ◽  
Jason S. Huber ◽  
Luc J. C. van Loon ◽  
Jeremy A. Simpson ◽  
...  

Supplementation with dietary inorganic nitrate ([Formula: see text]) is increasingly recognized to confer cardioprotective effects in both healthy and clinical populations. While the mechanism(s) remains ambiguous, in skeletal muscle oral consumption of NaNO3 has been shown to improve mitochondrial efficiency. Whether NaNO3 has similar effects on mitochondria within the heart is unknown. Therefore, we comprehensively investigated the effect of NaNO3 supplementation on in vivo left ventricular (LV) function and mitochondrial bioenergetics. Healthy male Sprague-Dawley rats were supplemented with NaNO3 (1 g/l) in their drinking water for 7 days. Echocardiography and invasive hemodynamics were used to assess LV morphology and function. Blood pressure (BP) was measured by tail-cuff and invasive hemodynamics. Mitochondrial bioenergetics were measured in LV isolated mitochondria and permeabilized muscle fibers by high-resolution respirometry and fluorometry. Nitrate decreased ( P < 0.05) BP, LV end-diastolic pressure, and maximal LV pressure. Rates of LV relaxation (when normalized to mean arterial pressure) tended ( P = 0.13) to be higher with nitrate supplementation. However, nitrate did not alter LV mitochondrial respiration, coupling efficiency, or oxygen affinity in isolated mitochondria or permeabilized muscle fibers. In contrast, nitrate increased ( P < 0.05) the propensity for mitochondrial H2O2 emission in the absence of changes in cellular redox state and decreased the sensitivity of mitochondria to ADP (apparent Km). These results add to the therapeutic potential of nitrate supplementation in cardiovascular diseases and suggest that nitrate may confer these beneficial effects via mitochondrial redox signaling.


Sign in / Sign up

Export Citation Format

Share Document