Endothelial function and shear stress in hypobaric hypoxia: time course and impact of plasma volume expansion in men

2020 ◽  
Vol 319 (5) ◽  
pp. H980-H994
Author(s):  
Joshua C. Tremblay ◽  
Philip N. Ainslie ◽  
Rachel Turner ◽  
Hannes Gatterer ◽  
Maja Schlittler ◽  
...  

Using a normoxic crossover study design, we examined the impact of hypobaric hypoxia (4 days; altitude equivalent, 3,500 m) and hemoconcentration on blood viscosity, shear stress, and endothelial function. Blood viscosity increased during the hypoxic exposure and was accompanied by elevated resting and exercising arterial shear stress. Flow-mediated dilation stimulated by reactive hyperemia and handgrip exercise was preserved throughout the hypoxic exposure. Plasma volume expansion reversed the hypoxia-associated hemoconcentration and selectively increased handgrip exercise flow-mediated dilation.

2018 ◽  
Vol 315 (6) ◽  
pp. H1532-H1543 ◽  
Author(s):  
Joshua C. Tremblay ◽  
Ryan L. Hoiland ◽  
Howard H. Carter ◽  
Connor A. Howe ◽  
Mike Stembridge ◽  
...  

The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10). Arterial blood gases, blood viscosity, shear stress, and FMD [duplex ultrasound of the brachial and superficial femoral arteries (BA and SFA, respectively)] were acquired at each time point. Ascent decreased mean and increased retrograde shear stress in the upper and lower limb of lowlanders and Sherpa. Although BA FMD decreased in lowlanders from 7.1 ± 3.9% to 3.8 ± 2.8% at 5,050 versus 1,400 m ( P < 0.001), SFA FMD was preserved. In Sherpa, neither BA nor SFA FMD were changed upon ascent to 5,050 m. In lowlanders, the ascent-related exercise may favorably influence endothelial function in the active limb (SFA); selective impairment in FMD in the BA in lowlanders is likely mediated via the low mean or high oscillatory baseline shear stress. In contrast, Sherpa presented protected endothelial function, suggesting a potential vascular aspect of high-altitude acclimatization/adaptation. NEW & NOTEWORTHY Upper and lower limb arterial shear stress and flow-mediated dilation (FMD) were assessed on matched ascent from 1,400 to 5,050 m in lowlanders and Sherpa. A shear stress pattern associated with vascular dysfunction/risk manifested in both limbs of lowlanders and Sherpa. FMD was impaired only in the upper limb of lowlanders. The findings indicate a limb-specific impact of high-altitude trekking on FMD and a vascular basis to acclimatization wherein endothelial function is protected in Sherpa on ascent


Hypertension ◽  
1995 ◽  
Vol 26 (6) ◽  
pp. 1019-1023 ◽  
Author(s):  
Sofía P. Salas ◽  
Fernando Altermatt ◽  
Mauricio Campos ◽  
Andrea Giacaman ◽  
Pedro Rosso

2013 ◽  
Vol 305 (10) ◽  
pp. F1491-F1497 ◽  
Author(s):  
Li Zhou ◽  
Gang Liu ◽  
Zhanjun Jia ◽  
Kevin T. Yang ◽  
Ying Sun ◽  
...  

Thiazolidinediones (TZDs), which are synthetic peroxisome proliferator-activated receptor subtype-γ (PPARγ), agonists are highly effective for treatment of type 2 diabetes. However, the side effect of fluid retention has significantly limited their application. Most of the previous studies addressing TZD-induced fluid retention employed healthy animals. The underlying mechanism of this phenomenon is still incompletely understood, particularly in the setting of disease state. The present study was undertaken to examine rosiglitazone (RGZ)-induced fluid retention in db/db mice and to further investigate the underlying mechanism. In response to RGZ treatment, db/db mice exhibited an accelerated plasma volume expansion as assessed by hematocrit (Hct) and fluorescent nanoparticles, in parallel with a greater increase in body weight, compared with lean controls. In response to RGZ-induced fluid retention, urinary Na+ excretion and urine volume were significantly increased in lean mice. In contrast, the natriuretic and diuretic responses were significantly blunted in db/db mice. RGZ db/db mice exhibited a parallel decrease in plasma Na+ concentration and plasma osmolality, contrasting to unchanged levels in lean controls. Imunoblotting analysis showed downregulation of renal aquaporin (AQP) 2 expression in response to RGZ treatment in lean mice but not in db/db mice. Renal AQP3 protein expression was unaffected by RGZ treatment in lean mice but was elevated in db/db mice. In contrast, the expression of Na+/H+ exchanger-3 (NHE3) and NKCC2 was unchanged in either mouse strain. Together these results suggest that compared with the lean controls, db/db mice exhibited accelerated plasma volume expansion that was in part due to the inappropriate response of renal water transporters.


1988 ◽  
Vol 64 (1) ◽  
pp. 404-408 ◽  
Author(s):  
M. K. Hopper ◽  
A. R. Coggan ◽  
E. F. Coyle

The effects of plasma-volume (PV) expansion on stroke volume (SV) (CO2 rebreathing) during submaximal exercise were determined. Intravenous infusion of 403 +/- 21 ml of a 6% dextran solution before exercise in the upright position increased SV 11% (i.e., 130 +/- 6 to 144 +/- 5 ml; P less than 0.05) in untrained males (n = 7). Further PV expansion (i.e., 706 +/- 43 ml) did not result in a further increase in SV (i.e., 145 +/- 4 ml). SV was somewhat higher during supine compared with upright exercise when blood volume (BV) was normal (i.e., 138 +/- 8 vs. 130 +/- 6 ml; P = 0.08). PV expansion also increased SV during exercise in the supine position (i.e., 138 +/- 8 to 150 +/- 8 ml; P less than 0.05). In contrast to these observations in untrained men, PV expansion of endurance-trained men (n = 10), who were naturally PV expanded, did not increase SV during exercise in the upright or supine positions. When BV in the untrained men was increased to match that of the endurance-trained subjects, SV was observed to be 15% higher (165 +/- 7 vs. 144 +/- 5 ml; P less than 0.05), whereas mean blood pressure and total peripheral resistance were significantly lower (P less than 0.05) in the trained compared with untrained subjects during upright exercise at a similar heart rate. The present findings indicate that exercise SV in untrained men is preload dependent and that increases in exercise SV occur in response to the first 400 ml of PV expansion. It appears that approximately one-half of the difference in SV normally observed between untrained and highly endurance-trained men during upright exercise is due to a suboptimal BV in the untrained men.


Sign in / Sign up

Export Citation Format

Share Document