scholarly journals Inhibition of iNOS augments cutaneous endothelial NO-dependent vasodilation in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks

2021 ◽  
Vol 320 (1) ◽  
pp. H190-H199
Author(s):  
James T. Miller ◽  
Casey G. Turner ◽  
Jeffrey S. Otis ◽  
Yesser Sebeh ◽  
Matthew J. Hayat ◽  
...  

Inducible nitric oxide synthase (iNOS) is typically upregulated in conditions of increased oxidative stress and may have detrimental effects on the vasculature. Endothelial nitric oxide (NO), which is cardioprotective, is reduced in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks. We found that inhibition of iNOS can increase endothelial NO-dependent vasodilation in prehypertensive White participants and in both normotensive and prehypertensive Black participants.

2021 ◽  
pp. 096032712199944
Author(s):  
Mohamed IA Hassan ◽  
Fares EM Ali ◽  
Abdel-Gawad S Shalkami

Aim: Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. Methods: Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. Results: Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. Conclusions: CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.


2007 ◽  
Vol 293 (6) ◽  
pp. H3532-H3541 ◽  
Author(s):  
Antonio L'Abbate ◽  
Danilo Neglia ◽  
Cecilia Vecoli ◽  
Michela Novelli ◽  
Virginia Ottaviano ◽  
...  

Transient reduction in coronary perfusion pressure in the isolated mouse heart increases microvascular resistance (paradoxical vasoconstriction) by an endothelium-mediated mechanism. To assess the presence and extent of paradoxical vasoconstriction in hearts from normal and diabetic rats and to determine whether increased heme oxygenase (HO)-1 expression and HO activity, using cobalt protoporphyrin (CoPP), attenuates coronary microvascular response, male Wistar rats were rendered diabetic with nicotinamide/streptozotocin for 2 wk and either CoPP or vehicle was administered by intraperitoneal injection weekly for 3 wk (0.5 mg/100 g body wt). The isolated beating nonworking heart was submitted to transient low perfusion pressure (20 mmHg), and coronary resistance (CR) was measured. During low perfusion pressure, CR increased and was associated with increased lactate release. In diabetic rats, CR was higher, HO-1 expression and endothelial nitric oxide synthase were downregulated, and inducible nitric oxide synthase and O2− were upregulated. After 3 wk of CoPP treatment, HO activity was significantly increased in the heart. Upregulation of HO-1 expression and HO activity by CoPP resulted in the abolition of paradoxical vasoconstriction and a reduction in oxidative ischemic damage. In addition, there was a marked increase in serum adiponectin. Elevated HO-1 expression was associated with increased expression of cardiac endothelial nitric oxide synthase, B-cell leukemia/lymphoma extra long, and phospho activator protein kinase levels and decreased levels of inducible nitric oxide synthase and malondialdehyde. These results suggest a critical role for HO-1 in microvascular tone control and myocardial protection during ischemia in both normal and mildly diabetic rats through the modulation of constitutive and inducible nitric oxide synthase expression and activity, and an increase in serum adiponectin.


Reproduction ◽  
2001 ◽  
pp. 403-407 ◽  
Author(s):  
M Farina ◽  
ML Ribeiro ◽  
A Franchi

The conversion of [14C]arginine into [14C]citrulline as an indicator of nitric oxide synthesis was studied in uteri isolated from rats on different days of gestation, after labour and during dioestrus. Nitric oxide synthesis was present in uterine tissues isolated at each stage of gestation and also in tissues collected during dioestrus and after labour. Expression of neuronal nitric oxide synthase was not detectable at any of the stages studied. Endothelial nitric oxide synthase was present at all the stages studied, but there was a significant increase on day 13 of gestation and a decrease thereafter, with the lowest expression recorded on the day after labour. Inducible nitric oxide synthase expression in rat uteri increased substantially during pregnancy, with the highest expression on day 13 of gestation; expression decreased at term and after labour. The changes in expression of inducible nitric oxide synthase were coincident with the changes in nitric oxide synthase activity in uteri treated with aminoguanidine. Thus, these findings indicate that an increase in expression of inducible nitric oxide synthase in the uterus may be important for maintenance of uterine quiescence during pregnancy and its decrease near the time of labour could have an effect on the start of uterine contractility.


2002 ◽  
Vol 21 (7) ◽  
pp. 359-364 ◽  
Author(s):  
S Dogru-Abbasoglu ◽  
J Balkan ◽  
Ö Kanbaglõ ◽  
U Cevikbas ◽  
G Aykac-Toker ◽  
...  

Hepatic cirrhosis is produced in rats by administration of thioacetamide (TAA) (0.3 g/L tap water for a period of three months). This treatment caused an increase in oxidative stress in the liver. Lipopolysaccharide (LPS) administration (5 mg/kg) to rats with cirrhosis was observed to increase hepatotoxicity as well as oxidative stress according to biochemical and histopathological findings. However, aminoguanidine (AG), an inducible nitric oxide synthase (iNOS) inhibitor, plus N-acetylcysteine (NAC) treatment reduced the LPS-augmented hepatotoxicity in rats with cirrhosis without making any changes in oxidative stress in the liver.


Sign in / Sign up

Export Citation Format

Share Document