Interaction of acetylcholine and epinephrine on heart cyclic AMP-dependent protein kinase

1978 ◽  
Vol 234 (4) ◽  
pp. H432-H438
Author(s):  
S. L. Keely ◽  
T. M. Lincoln ◽  
J. D. Corbin

In the isolated perfused rat heart, epinephrine produced a rapid, concentration-dependent increase in cyclic adenosine 3',5'-monophosphate (cAMP), activation of cAMP-dependent protein kinase, activation of phosphorylase, and increase in contractile force. At epinephrine concentrations of 1 micron or less, acetylcholine antagonized all these beta-adrenergic effects and also increased cyclic guanosine 3',5'-monophosphate (cGMP) levels. When used alone, acetylcholine produced a rapid elevation of cGMP and markedly diminished contractile force but did not significantly lower basal cAMP levels or cAMP-dependent protein kinase activity. The data suggest that changes in cAMP-dependent protein kinase activity can explain the antagonism of epinephrine-induced activation of phosphorylase by acetylcholine, but cannot completely account for the inhibitory effect of the cholinergic agent on contractile force.

1977 ◽  
Vol 233 (2) ◽  
pp. H269-H275 ◽  
Author(s):  
S. L. Keely ◽  
J. D. Corbin

The effects of perfusate epinephrine, 1-methyl-3-isobutylxanthine, calcium, and filling pressure were investigated in the perfused working rat heart. Epinephrine produced a rapid increase in cAMP, in the protein kinase activity ratio, and in active phosphorylase. These effects preceded the increase in contractile force produced by the hormone. There was good correlation between protein kinase activation and the increase in force. Epinephrine and the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine were synergistic in their stimulatory effects on cAMP, protein kinase activity, active phosphorylase, and contractile force. When an increase in the force of contraction was produced either by increasing the filling pressure of the heart or by increasing the perfusate Ca2+ concentration, there was no change in either cAMP levels or protein kinase activity. These data suggest that the effect of beta-adrenergic catecholamines on contractile force is due, at least in part, to cAMP-dependent protein kinase activation. The increase in contractile force produced either by increasing the filling pressure (Frank-Starling phenomenon) or by increasing the perfusate Ca2+ concentration is apparently not mediated by cAMP or the protein kinase.


1979 ◽  
Vol 236 (1) ◽  
pp. H84-H91
Author(s):  
S. L. Keely ◽  
A. Eiring

The effects of histamine on heart cAMP-dependent protein kinase activity, cAMP levels, phosphorylase activity, and contractile force was investigated in the perfused guinea pig heart. To accurately determine the protein kinase activity ratio in guinea pig heart, it was necessary to measure kinase activity in whole homogenates immediately after homogenization of the tissue. Histamine produced a rapid dose-dependent increase in cAMP and the protein kinase activity ratio followed by increased in contractile force and phosphorylase activity. There was a good correlation between the degree of protein kinase activation and the increase in phosphorylase and force. The beta-adrenergic blocking agent propranolol did not reduce the effects of histamine, but metiamide, a potent H2-receptor antagonist, greatly attenuated all the effects of histamine. The data support the hypothesis that increases in heart cAMP-dependent protein kinase activity produce corresponding increases in contractile force and phosphorylase activity.


1994 ◽  
Vol 77 (6) ◽  
pp. 2618-2624 ◽  
Author(s):  
T. Izawa ◽  
T. Komabayashi

The effects of Ca2+ on lipolysis and protein kinase activity in adipocytes from exercise-trained rats were investigated. Chronic exercise significantly increased lipolytic responses to norepinephrine and dibutyryl adenosine 3′,5′-cyclic monophosphate (cAMP). The inhibitory effects of N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), a calumodulin inhibitor, on norepinephrine- and dibutyryl cAMP-stimulated lipolysis were significantly greater in trained than in sedentary rats. Training did not alter cAMP-dependent protein kinase activity. However, the inhibitory effect of W-7 on cAMP-dependent protein kinase activity was much greater in trained than in sedentary rats. The basal intracellular free Ca2+ concentration ([Ca2+]i) was significantly higher in trained than in sedentary rats. The rapid and transient increases in [Ca2+]i due to adrenocorticotropic hormone and phenylephrine from basal levels were significantly lower in trained than in sedentary rats. However, the higher basal [Ca2+]i level in trained rats led to increases in sustained [Ca2+]i levels after stimulation. We concluded that in trained rats the regulation of protein kinase activity by cAMP depends to a greater degree on Ca(2+)-calmodulin complex than it does in sedentary rats and that training alters adipocyte intracellular Ca2+ homeostasis, including [Ca2+]i responsiveness to hormones.


1984 ◽  
Vol 10 (4) ◽  
pp. 433-444 ◽  
Author(s):  
Claude C. Pariset ◽  
Jacqueline S. Weinman ◽  
Francoise T. Escaig ◽  
Michele Y. Guyot ◽  
Francine C. Iftode ◽  
...  

FEBS Letters ◽  
1997 ◽  
Vol 414 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hideyoshi Higashi ◽  
Kazuki Sato ◽  
Atsuko Ohtake ◽  
Akira Omori ◽  
Sachiyo Yoshida ◽  
...  

1973 ◽  
Vol 136 (4) ◽  
pp. 993-998 ◽  
Author(s):  
Malcolm C. Richardson ◽  
Dennis Schulster

A method has been developed for investigation of the effect of adrenocorticotrophic hormone (ACTH) on the state of activation of a cyclic AMP-dependent protein kinase within cells of the adrenal cortex. Enzyme activity was measured in terms of the quantity of32P transferred from [γ-32P]ATP to histone under conditions in which bound cyclic AMP did not dissociate from the regulatory subunit of the protein kinase ACTH (1×10-2i.u./ml) caused a rapid and complete activation of the cyclic AMP-dependent protein kinase activity within 2min of hormone addition to the isolated cells. In response to a range of ACTH concentrations a sigmoid log dose–response curve for protein kinase activation was obtained, with half-maximal stimulation attained at about 1×10-3i.u./ml. However, some low doses of ACTH that elicited a marked (but submaximal) steroidogenic response failed to cause a clear stimulation of protein kinase activity in isolated adrenal cells. Theophylline (2mm) potentiated the effect of ACTH on protein kinase activity. The results implicate an important role for protein kinase in ACTH action on the adrenocortical cell.


1981 ◽  
Vol 240 (4) ◽  
pp. H441-H447
Author(s):  
L. Vittone ◽  
A. Grassi ◽  
L. Chiappe ◽  
M. Argel ◽  
H. E. Cingolani

The relationship between cAMP and relaxation was studied in the isolated rat heart beating at constant rate and perfused at constant coronary flow. After treatment during 1 min with different positive inotropic interventions, cyclic nucleotide levels (cAMP and cGMP) and cAMP-dependent protein kinase activity were determined in heart homogenates. Glucagon, norepinephrine, and isoproterenol increased cAMP from 0.503 +/- 0.025 pmol/mg wet wt to 1.051 +/- 0.099, 0.900 +/- 0.064, and 0.982 +/- 0.138, respectively. Simultaneously glucagon, norepinephrine, and isoproterenol increased cAMP-dependent protein kinase activity ratio from 0.21 +/- 0.02 to 0.45 +/- 0.04, 0.33 +/- 0.02, and 0.34 +/- 0.02, respectively. The ratio between maximal velocities of contraction and relaxation (+T/-T) was significantly decreased by these interventions, whereas time to peak tension (TTP) was shortened by norepinephrine and isoproterenol. High calcium, ouabain, and paired stimulation did not affect cAMP levels, TTP, or +T/-T. A striking correlation was found between cAMP-dependent protein kinase activity and relaxation induces, i.e., TTP, -T, or +T/-T (r = +/- 0.7 to -0.9). Results suggest that inotropic interventions increasing cAMP levels might be primarily affecting intracellular mechanisms causing relaxation.


Sign in / Sign up

Export Citation Format

Share Document