Ca2+ and lipolysis in adipocytes from exercise-trained rats

1994 ◽  
Vol 77 (6) ◽  
pp. 2618-2624 ◽  
Author(s):  
T. Izawa ◽  
T. Komabayashi

The effects of Ca2+ on lipolysis and protein kinase activity in adipocytes from exercise-trained rats were investigated. Chronic exercise significantly increased lipolytic responses to norepinephrine and dibutyryl adenosine 3′,5′-cyclic monophosphate (cAMP). The inhibitory effects of N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), a calumodulin inhibitor, on norepinephrine- and dibutyryl cAMP-stimulated lipolysis were significantly greater in trained than in sedentary rats. Training did not alter cAMP-dependent protein kinase activity. However, the inhibitory effect of W-7 on cAMP-dependent protein kinase activity was much greater in trained than in sedentary rats. The basal intracellular free Ca2+ concentration ([Ca2+]i) was significantly higher in trained than in sedentary rats. The rapid and transient increases in [Ca2+]i due to adrenocorticotropic hormone and phenylephrine from basal levels were significantly lower in trained than in sedentary rats. However, the higher basal [Ca2+]i level in trained rats led to increases in sustained [Ca2+]i levels after stimulation. We concluded that in trained rats the regulation of protein kinase activity by cAMP depends to a greater degree on Ca(2+)-calmodulin complex than it does in sedentary rats and that training alters adipocyte intracellular Ca2+ homeostasis, including [Ca2+]i responsiveness to hormones.

1978 ◽  
Vol 234 (4) ◽  
pp. H432-H438
Author(s):  
S. L. Keely ◽  
T. M. Lincoln ◽  
J. D. Corbin

In the isolated perfused rat heart, epinephrine produced a rapid, concentration-dependent increase in cyclic adenosine 3',5'-monophosphate (cAMP), activation of cAMP-dependent protein kinase, activation of phosphorylase, and increase in contractile force. At epinephrine concentrations of 1 micron or less, acetylcholine antagonized all these beta-adrenergic effects and also increased cyclic guanosine 3',5'-monophosphate (cGMP) levels. When used alone, acetylcholine produced a rapid elevation of cGMP and markedly diminished contractile force but did not significantly lower basal cAMP levels or cAMP-dependent protein kinase activity. The data suggest that changes in cAMP-dependent protein kinase activity can explain the antagonism of epinephrine-induced activation of phosphorylase by acetylcholine, but cannot completely account for the inhibitory effect of the cholinergic agent on contractile force.


1984 ◽  
Vol 10 (4) ◽  
pp. 433-444 ◽  
Author(s):  
Claude C. Pariset ◽  
Jacqueline S. Weinman ◽  
Francoise T. Escaig ◽  
Michele Y. Guyot ◽  
Francine C. Iftode ◽  
...  

1979 ◽  
Vol 236 (1) ◽  
pp. H84-H91
Author(s):  
S. L. Keely ◽  
A. Eiring

The effects of histamine on heart cAMP-dependent protein kinase activity, cAMP levels, phosphorylase activity, and contractile force was investigated in the perfused guinea pig heart. To accurately determine the protein kinase activity ratio in guinea pig heart, it was necessary to measure kinase activity in whole homogenates immediately after homogenization of the tissue. Histamine produced a rapid dose-dependent increase in cAMP and the protein kinase activity ratio followed by increased in contractile force and phosphorylase activity. There was a good correlation between the degree of protein kinase activation and the increase in phosphorylase and force. The beta-adrenergic blocking agent propranolol did not reduce the effects of histamine, but metiamide, a potent H2-receptor antagonist, greatly attenuated all the effects of histamine. The data support the hypothesis that increases in heart cAMP-dependent protein kinase activity produce corresponding increases in contractile force and phosphorylase activity.


FEBS Letters ◽  
1997 ◽  
Vol 414 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hideyoshi Higashi ◽  
Kazuki Sato ◽  
Atsuko Ohtake ◽  
Akira Omori ◽  
Sachiyo Yoshida ◽  
...  

1981 ◽  
Vol 240 (4) ◽  
pp. H441-H447
Author(s):  
L. Vittone ◽  
A. Grassi ◽  
L. Chiappe ◽  
M. Argel ◽  
H. E. Cingolani

The relationship between cAMP and relaxation was studied in the isolated rat heart beating at constant rate and perfused at constant coronary flow. After treatment during 1 min with different positive inotropic interventions, cyclic nucleotide levels (cAMP and cGMP) and cAMP-dependent protein kinase activity were determined in heart homogenates. Glucagon, norepinephrine, and isoproterenol increased cAMP from 0.503 +/- 0.025 pmol/mg wet wt to 1.051 +/- 0.099, 0.900 +/- 0.064, and 0.982 +/- 0.138, respectively. Simultaneously glucagon, norepinephrine, and isoproterenol increased cAMP-dependent protein kinase activity ratio from 0.21 +/- 0.02 to 0.45 +/- 0.04, 0.33 +/- 0.02, and 0.34 +/- 0.02, respectively. The ratio between maximal velocities of contraction and relaxation (+T/-T) was significantly decreased by these interventions, whereas time to peak tension (TTP) was shortened by norepinephrine and isoproterenol. High calcium, ouabain, and paired stimulation did not affect cAMP levels, TTP, or +T/-T. A striking correlation was found between cAMP-dependent protein kinase activity and relaxation induces, i.e., TTP, -T, or +T/-T (r = +/- 0.7 to -0.9). Results suggest that inotropic interventions increasing cAMP levels might be primarily affecting intracellular mechanisms causing relaxation.


1985 ◽  
Vol 249 (6) ◽  
pp. H1204-H1210 ◽  
Author(s):  
J. J. Murray ◽  
P. W. Reed ◽  
J. G. Dobson

We have reported that the divalent cation ionophore A23187, like the beta-adrenergic agonist isoproterenol, increased the force of contraction and rate of relaxation and shortened the duration of contraction of papillary muscles isolated from guinea pigs. A23187 produced a fall in resting tension and decreased the contracture tension of K +/- depolarized muscles, as did isoproterenol. In the present studies, isoproterenol produced a concentration-dependent, rapid, and sustained increase in the cyclic AMP (cAMP) content of papillary muscle. In contrast, A23187 had no detectable effect on cAMP levels, even in the presence of the phosphodiesterase inhibitor, papaverine. Neither drug, at concentrations maximal for contractile effects, altered cyclic GMP (cGMP). Isoproterenol increased the cAMP-dependent protein kinase activity ratio, whereas A23187 did not change the activity of this enzyme. However, both A23187 and isoproterenol produced a concentration-dependent increase in phosphorylase activity. Concentrations of A23187 or isoproterenol that enhanced contractility maximally increased the alkali-labile phosphate (by ca. 35%) but were without effect on the acid-labile, alkali-stable phosphate in the total acid precipitable protein. Contractile effects of isoproterenol, which reflect activated Ca2+ uptake, and the increase in phosphorylase activity produced by this agent are believed to be due to an increase in cAMP with subsequent activation of cAMP-dependent protein kinases and phosphorylation of proteins. A23187 may produce similar contractile effects without an increase in cAMP or cAMP-dependent protein kinase activity by activating other protein kinases and/or inhibiting phosphoprotein phosphatases, most likely by its effects on intracellular calcium.


1978 ◽  
Vol 234 (5) ◽  
pp. H638-H645 ◽  
Author(s):  
J. G. Dobson

The relationship between cAMP-dependent protein kinase activity and epinephrine-produced activation of phosphorylase and increase in contractility was investigated in the intact working rat heart. Epinephrine was administered as a bolus into the superior vena cava of open-chest preparations and the hearts were rapidly frozen. cAMP increased within 5 s and returned to control within 20-30 s. Protein kinase and phosphorylase kinase activity ratios increased transiently with the same time course as that for cAMP. The phosphorylase activity ratio and the rate of left ventricular pressure development increased maximally within 15 s and returned to control in 30-60 s. Continuous infusion of epinephrine caused a sustained elevation of the protein kinase. Free catalytic protein kinase activity increased proportionately with the dose of epinephrine. The beta-adrenergic blocking agent, practolol, had no effect on the basal levels of the five parameters studied, but did prevent the epinephrine-produced increases. The results suggest that the time course of cAMP-dependent protein kinase activation is appropriate if this enzyme is to play a role in the catecholamine-induced increase in both glycogenolysis and contractility in the in vivo heart.


Sign in / Sign up

Export Citation Format

Share Document