Analysis of myocardial and total body integral extraction ratios of rubidium-86

1978 ◽  
Vol 235 (6) ◽  
pp. H794-H802
Author(s):  
P. F. McDonagh ◽  
A. F. Salel ◽  
K. A. Krohn ◽  
E. A. Rhode ◽  
D. T. Mason

Coronary blood flow (QM) measurement with radiorubidium (Rb) assumes that Rb distributes to the myocardium in proportion to flow. This assumption is correct if the integral myocardial Rb extraction ratio (ERM) equals total body extraction (ERTB). A right-heart-bypass preparation was employed to test the hypothesis that ERM = ERTB and to examine the determinants of Rb extraction. Dogs were anesthetized with pentobarbital, and arterial, coronary venous, and total body venous Rb concentrations were continuously measured for 4 min after injection. We found that ERM (0.56 +/- 0.01) was significantly less than ERTB (0.70 +/- 0.01), P less than 0.01 (n = 29) and concluded that Rb did not distribute in proportion to flow. We do not recommend this method for clinical use. ERM is flow dependent and ERRB is a function of the total cardiac output and the distribution of cardiac output. Before employing Rb in animal experiments, it is recommended that a preliminary study be performed comparing flow measured with Rb to an independent measure of blood flow.

Author(s):  
PieterD. Verdouw ◽  
LoesM.A. Sassen ◽  
DirkJ. Duncker ◽  
IlonaO.L. Schmeets ◽  
RobJ. Rensen ◽  
...  

1979 ◽  
Vol 236 (2) ◽  
pp. H218-H224 ◽  
Author(s):  
S. C. Crayton ◽  
R. Aung-Din ◽  
D. E. Fixler ◽  
J. H. Mitchell

Studies were designed to characterize the distribution of cardiac output during induced isometric exercise in anesthetized dogs. The response to isometric exercise involved significant increases in heart rate (+12 +/- 3%(SE)), mean arterial pressure (+13 +/- 2%), cardiac output (+26 +/- 8%), and respiratory minute volume (+75 +/- 26%); total peripheral resistance did not change significantly. Significant changes in blood flow were observed during isometric exercise in kidneys (-18 +/- 6%) and contracting limb muscles (+453 +/- 154%). Flow to liver (hepatic artery), spleen, brain, and myocardium remained near control values. Section of spinal dorsal roots L6-L7 abolished the responses to isometric exercise except for the increase in flow to exercising limb muscles. Alpha-adrenergic receptor blockade abolished the decrease in renal blood flow during isometric exercise; however, the increase in flow to exercising limb muscles was not affected by either alpha- or beta-adrenergic blockade.


1959 ◽  
Vol 196 (2) ◽  
pp. 391-393 ◽  
Author(s):  
Richard L. Farrand ◽  
Steven M. Horvath

Khellin, a drug employed as a coronary dilator, was tested to determine its effects on the cardiovascular system of the dog. Ten mongrel dogs were anesthetized with Nembutal and, after control observations were made, given an intravenous administration of 1 mg/kg body weight of khellin. Coronary blood flow and cardiac output samples were drawn during the control period and at 10, 40 and 80 minutes after administration of the drug Cardiac output was calculated by the direct Fick principle and coronary blood flow by the nitrous oxide method. There was a significant (5%) increase in the arterial oxygen content during the 10- and 40-minute intervals, but no change was observed at 80 minutes. An increase in arterial-mixed venous oxygen difference occurred at 40 and 80 minutes. No change in systemic arterial pressure or cardiac output was noted at any time. Coronary blood flow had decreased slightly at 80 minutes. A significant decrease in carbon dioxide content of the arterial, pulmonary arterial and coronary sinus blood was observed, possibly as a consequence of hyperventilation. Khellin appeared to alter the metabolism of the myocardial and splanchnic tissues.


1968 ◽  
Vol 46 (4) ◽  
pp. 653-659 ◽  
Author(s):  
L. Jansky ◽  
J. S. Hart

Cold acclimation increased the cardiac output of unanesthetized rats when measured at 30 °C. After exposure to 9 °C for 70 min cardiac output further increased by 46% in both warm- and cold-acclimated rats. From the changes in the fractional distribution of cardiac output after cold exposure it was shown that the blood flow increased significantly in muscular organs (heart, diaphragm, skeletal muscles) and in the adrenals of warm-acclimated rats. In cold-acclimated rats the blood flow to the brown and white adipose tissues, pancreas, kidney, intestine, liver, and other internal organs was also increased in a cold environment, and accounted for 65% of the increase in blood flow during exposure to cold compared with only 36% in warm-acclimated rats. It is estimated that the extramuscular thermogenesis can account for a greater proportion of the total nonshivering thermogenesis in cold-acclimated rats. The contribution of brown adipose tissue is estimated not to exceed about 6% of the total heat production increase in cold-acclimated rats during exposure to cold.


1978 ◽  
Vol 56 (1) ◽  
pp. 97-109 ◽  
Author(s):  
David O. Foster ◽  
M. Lorraine Frydman

The technique of using γ-labeled plastic microspheres (15 ± 5 μm) to measure cardiac output (CO) and its fractional distribution (FD) to individual tissues and organs was judged by various criteria to give valid data when applied to barbital-sedated warm-acclimated or cold-acclimated (CA) white rats, which were either resting or responding calorigenically to infused noradrenaline (NA). The FD of CO to each of 16 tissues or organs of CA rats at rest or responding to NA was then estimated both with 86Rb+ and with microspheres, the two tracers being injected simultaneously. For only seven of the tissues examined in resting rats and only one in NA-infused rats was the FD of CO estimated with 86Rb+ not significantly different from that estimated with microspheres. 86Rb+ to microsphere ratios of the FD of CO to individual tissues ranged from 3.5 and 3.0 for liver and skeletal muscle, respectively, down to 0.09 and 0.07 for brown adipose tissue (BAT) and brain. Since microsphere-based estimates of blood flow to the interscapular BAT of CA rats responding to NA were corroborated by direct measurements of venous efflux from the tissue, it is unequivocal that the 86Rb+-based estimate of the fraction of CO directed to interscapular BAT was highly erroneous. When considered along with data from the literature, the present findings support a conclusion that the uptake of 86Rb+ by a tissue frequently does not provide a valid measure of the FD of CO to the tissue. Some of the factors that are likely responsible for this situation are discussed, and it is suggested that only by a fortuitous combination of circumstances does the uptake of 86Rb+ by a tissue sometimes match the FD of CO to the tissue.


1959 ◽  
Vol 261 (13) ◽  
pp. 653-655 ◽  
Author(s):  
George G. Rowe ◽  
George M. Maxwell ◽  
Cesar A. Castillo ◽  
C. W. Crumpton ◽  
Richard J. Botham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document