Receptor-mediated effects of a PGH2 analogue (U 46619) on human platelets

1987 ◽  
Vol 253 (5) ◽  
pp. H1035-H1043 ◽  
Author(s):  
T. A. Morinelli ◽  
S. Niewiarowski ◽  
J. L. Daniel ◽  
J. B. Smith

The specific effects of U 46619 (9,11-dideoxy,9 alpha-11 alpha-methanoepoxyprostaglandin F2 alpha), thromboxane A2-prostaglandin H2 (TxA2/PGH2) analogue, on human platelet shape change, myosin light-chain phosphorylation, serotonin release, fibrinogen receptor exposure, and platelet aggregation were measured and compared with binding of [3H]U 46619 to platelets. Shape change and myosin light-chain phosphorylation were found to be saturable and dose dependent, having effective concentration producing 50% of the maximum response (EC50) values of 0.035 +/- 0.005 and 0.057 +/- 0.021 microM, respectively (mean +/- SE). These two effects were competitively inhibited by specific antagonists of TxA2/PGH2 receptors (BM 13177, PTA-OH, and 1.PTA-OH) indicating that they are receptor mediated. Binding of [3H]U 46619 showed two components. Occupancy of high-affinity binding sites [dissociation constant (Kd) = 0.041 +/- 0.009 microM, maximum binding site (Bmax) = 19.4 +/- 5.3 fmol/10(7) platelets, with 1,166 +/- 310 sites/platelet; n = 12] correlated with platelet shape change and myosin light-chain phosphorylation. We propose that a second component with an apparent Kd of 1.46 +/- 0.47 microM (n = 12) represents a second, low-affinity site. Mean EC50 values for U 46619-induced serotonin release, platelet aggregation, and fibrinogen receptor exposure were 0.54 +/- 0.13. 1.31 +/- 0.34 and 0.53 +/- 0.21 microM, respectively. Therefore, the platelet release reaction was not directly correlated with occupancy of high-affinity receptors but could be related to the second binding component of U 46619. Fibrinogen receptor exposure and platelet aggregation caused by U 46619 appeared to be events mediated by the release of adenosine diphosphate from platelet-dense granules.

Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 796-803
Author(s):  
WR Figures ◽  
LM Scearce ◽  
P DeFeo ◽  
G Stewart ◽  
F Zhou ◽  
...  

Previous reports have indicated that the nucleotide affinity analog 5′- p-fluorosulfonylbenzoyl adenosine (FSBA) at concentrations between 40 and 100 mumol/L and at times greater than 20 minutes covalently modifies a single protein component on the external platelet membrane surface and that adenosine diphosphate (ADP) protects against this reaction. That this protein is an ADP receptor linked to platelet activation is shown by FSBA inhibition of ADP-mediated platelet shape change, aggregation, and fibrinogen receptor exposure. In this report, further evidence for the interaction of FSBA with the ADP receptor on platelets is provided by the observation that FSBA at high concentrations (100 to 500 mumol/L) behaves as a weak agonist to produce platelet shape change within one minute as detected by spectroscopic assay and scanning electron microscopy with concomitant phosphorylation of the light chain of platelet myosin. The specificity of FSBA as an agonist is demonstrated by inhibition of FSBA-induced shape change by ATP and the covalent incorporation of SBA as well as the failure of 5′-fluorosulfonylbenozoyl guanosine (FSBG) to cause shape change. In contrast, incubation of platelets with low concentrations of [3H]-FSBA (40 mol/L) is not associated with stimulation of platelet shape change or myosin light chain phosphorylation.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 796-803 ◽  
Author(s):  
WR Figures ◽  
LM Scearce ◽  
P DeFeo ◽  
G Stewart ◽  
F Zhou ◽  
...  

Abstract Previous reports have indicated that the nucleotide affinity analog 5′- p-fluorosulfonylbenzoyl adenosine (FSBA) at concentrations between 40 and 100 mumol/L and at times greater than 20 minutes covalently modifies a single protein component on the external platelet membrane surface and that adenosine diphosphate (ADP) protects against this reaction. That this protein is an ADP receptor linked to platelet activation is shown by FSBA inhibition of ADP-mediated platelet shape change, aggregation, and fibrinogen receptor exposure. In this report, further evidence for the interaction of FSBA with the ADP receptor on platelets is provided by the observation that FSBA at high concentrations (100 to 500 mumol/L) behaves as a weak agonist to produce platelet shape change within one minute as detected by spectroscopic assay and scanning electron microscopy with concomitant phosphorylation of the light chain of platelet myosin. The specificity of FSBA as an agonist is demonstrated by inhibition of FSBA-induced shape change by ATP and the covalent incorporation of SBA as well as the failure of 5′-fluorosulfonylbenozoyl guanosine (FSBG) to cause shape change. In contrast, incubation of platelets with low concentrations of [3H]-FSBA (40 mol/L) is not associated with stimulation of platelet shape change or myosin light chain phosphorylation.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 914-921 ◽  
Author(s):  
AK Rao ◽  
K Koike ◽  
J Willis ◽  
JL Daniel ◽  
C Beckett ◽  
...  

Abstract We describe four patients with impaired platelet aggregation and 14C- serotonin secretion during stimulation with adenosine diphosphate (ADP), epinephrine, collagen, and platelet-activating factor. The response to arachidonic acid was normal in all patients with regard to aggregation and in three of the four with regard to 14C-serotonin secretion. The total platelet adenosine triphosphate (ATP) and ADP content and the ATP to ADP ratio was normal in all patients, thereby excluding storage pool deficiency as the cause of the secretion defect. Studies with 3H-arachidonic acid-labeled platelets revealed that the thrombin-induced liberation of arachidonic acid from membrane-bound phospholipids was impaired in these patients. Further, platelet thromboxane B2 production, measured using a radioimmunoassay, was diminished during stimulation with ADP and thrombin, but was normal with arachidonic acid, indicating that the oxygenation of arachidonic acid was normal and that the diminished thromboxane production was due to a defect in the liberation of arachidonic acid. Release of arachidonic acid is mediated by phospholipases that are Ca++ dependent. To examine whether these patients may have a defect in making intracellular Ca++ available, another Ca++-dependent process, myosin light chain phosphorylation, was studied during thrombin stimulation. Platelets from three of the patients were found to behave the same as normal ones, suggesting that the deficiency in phospholipase activity may not be due to impaired Ca++ mobilization. Our studies demonstrate a novel group of patients with platelet secretion defects associated with impaired liberation of arachidonic acid from phospholipids. These patients exemplify a congenital defect, other than deficiencies of cyclooxygenase and thromboxane synthetase, by which thromboxane production may be impaired in platelets.


1977 ◽  
Author(s):  
G. R. Favis ◽  
R. W. Colman

Halofenate (Hal) has previously been shown to inhibit epinephrine (Epi) and ADP induced platelet aggregation and C14-serotonin release. We further investigated the site of action of Hal by examining platelet shape change as a membrane event and malondialdehyde (MDA) formation as a measure of prostaglandin synthesis. Platelet-rich-plasma (PRP) with and without Hal wasdiluted in an EDTA buffer and examined in a spectrophotometer modified for stirring and maintained at 37°. ADP induced increase in absorbance was recorded and the velocity of the shape change curve was plotted against ADP concentration. MDA production was measured by the thiobarbituric acid assay and utilized a DEAE-52 cellulose column to concentrate the chromogen. Hal in pharmacologic concentrations (.96mM) had no effect on Epi induced primary aggregation or on ADP induced shape change. However, at higher than pharmacologic amounts (3.36mM), Hal did inhibit ADP induced shape change. Epi-induced MDA formation (.18μM-.33μM) normally occurs concomitant with the second phase of aggregation and serotonin release but was markedly decreased by Hal (.06μM-.085μM). This inhibition was not due to a direct effect on prostaglandin synthesis since sodium arachi-donate (1mM) caused secondary aggregation in PRP treated with Hal but not PRP treated with aspirin (4mM). Hal (.96mM) does not seem to inhibit platelet aggregation through an inhibition of ADP induced shape change or of Epi induced primary aggregation. Since Hal treated platelets respond to arachidonate, Hal must work at some earlier step than arachidonate induced prostaglandin synthesis. We suggest that this may be an alteration of the platelet membrane structure which makes ADP and Epi binding sites less accessible or which impairs arachidonic acid release by phospholipase. Decreased MDA formation and inhibition of aggregation would then be secondary to this membrane change.


Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 914-921
Author(s):  
AK Rao ◽  
K Koike ◽  
J Willis ◽  
JL Daniel ◽  
C Beckett ◽  
...  

We describe four patients with impaired platelet aggregation and 14C- serotonin secretion during stimulation with adenosine diphosphate (ADP), epinephrine, collagen, and platelet-activating factor. The response to arachidonic acid was normal in all patients with regard to aggregation and in three of the four with regard to 14C-serotonin secretion. The total platelet adenosine triphosphate (ATP) and ADP content and the ATP to ADP ratio was normal in all patients, thereby excluding storage pool deficiency as the cause of the secretion defect. Studies with 3H-arachidonic acid-labeled platelets revealed that the thrombin-induced liberation of arachidonic acid from membrane-bound phospholipids was impaired in these patients. Further, platelet thromboxane B2 production, measured using a radioimmunoassay, was diminished during stimulation with ADP and thrombin, but was normal with arachidonic acid, indicating that the oxygenation of arachidonic acid was normal and that the diminished thromboxane production was due to a defect in the liberation of arachidonic acid. Release of arachidonic acid is mediated by phospholipases that are Ca++ dependent. To examine whether these patients may have a defect in making intracellular Ca++ available, another Ca++-dependent process, myosin light chain phosphorylation, was studied during thrombin stimulation. Platelets from three of the patients were found to behave the same as normal ones, suggesting that the deficiency in phospholipase activity may not be due to impaired Ca++ mobilization. Our studies demonstrate a novel group of patients with platelet secretion defects associated with impaired liberation of arachidonic acid from phospholipids. These patients exemplify a congenital defect, other than deficiencies of cyclooxygenase and thromboxane synthetase, by which thromboxane production may be impaired in platelets.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1373-1381 ◽  
Author(s):  
W Siess ◽  
EG Lapetina

Phorbol esters such as phorbol 12, 13-dibutyrate (PdBu; 40 to 200 nmol/L) or 12-O-tetradecanoyl phorbol 13-acetate (20 to 80 nmol/L) added to aspirinized platelet-rich plasma (PRP) 5 to 15 seconds prior to various platelet stimuli (epinephrine, ADP, prostaglandin endoperoxide analog U44069, collagen, PAF, or vasopressin) potentiate the rate and extent of aggregation and ATP secretion induced by those agonists. Platelet aggregation, but not secretion, is potentiated at low concentrations of agonists; platelet secretion is potentiated at higher concentrations of the platelet stimuli. Potentiation of platelet responses was also observed when the preincubation time with PdBu was extended to 12 minutes and also occurred in washed platelets. The potentiating effect of phorbol esters is not mediated by formation of arachidonate metabolites or by released ADP. The sensitizing effect of PdBu on platelet aggregation induced by epinephrine is unique, since in contrast to the other platelet stimuli it is also found at maximal concentrations of epinephrine and does not diminish with prolonged preincubation of platelets with PdBu. Activation of protein kinase C ranges from 20% to 80% over control after 1 to 10 minutes of platelet pretreatment with PdBu but dramatically increases after subsequent addition of a stimulus such as vasopressin. In contrast, agonist- induced myosin light chain phosphorylation is reduced after platelet pretreatment with PdBu. The results indicate that protein kinase C activation enhances platelet aggregation and dense granule secretion triggered by physiologic stimuli, although it desensitizes agonist- induced myosin light chain phosphorylation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3644-3644
Author(s):  
Todd M. Getz ◽  
Kamala Bhavaraju ◽  
Satya P. Kunapuli

Abstract The initial event in platelet activation is the reorganization of the cytoskeleton causing the platelets to change from a discoid to a spiculated spheroid shape. Platelet shape change is primarily regulated by the phosphorylation of myosin light chain kinase. We have shown that this process is mediated through both calcium-dependent and calcium-independent Rho kinase pathways. CPI-17, a Protein kinase C (PKC) phosphorylated inhibitory protein of myosin light chain phosphatase, has been shown to have a role in platelet shape change downstream of thrombin-induced platelet activation. CPI-17 is a 17 kDa protein expressed in human platelets shown to inhibit myosin light chain phosphotase activity via PKCs. In this study we examined the role of CPI-17 in ADP-induced shape change and phosphorylation of CPI-17, downstream of the Gq coupled, P2Y1, and the Gi coupled, P2Y12 receptors. CPI-17 phosphorylation occurred upon activation of platelets with 2MeSADP. This phosphorylation was abolished in the presence of the P2Y1 receptor antagonist, MRS-2179. These results indicated that Gq signaling is important for platelet shape change and phosphorylation of CPI-17. In the presence of the calcium chelator, BAPTA, platelets changed shape in response to 2MeSADP; CPI-17 phosphorylation, however, was unaffected by BAPTA treatment under these conditions. However, CPI-17 phosphorylation was inhibited in the presence of the pan PKC inhibitors. These results indicate that CPI-17 phosphorylation occurs downstream of PKC activation. In the presence of BAPTA, treatment with PKC inhibitors decreased platelet shape change possibly due to reduced CPI-17 phosphorylation. The shape change caused by p160ROCK downstream of G12/13 pathways was unaffected by pan PKC inhibitors, but abolished by p160ROCK inhibitors H1152 or Y27632. Platelets incubated with BAPTA, pan PKC inhibitors, and p160ROCK inhibitor H1152, abolished ADP-induced platelet shape change and CPI-17 phosphorylation. In conclusion, ADP-induced platelet shape change occurs through a Gq-mediated, calcium-independent signaling pathway regulated by CPI-17 phosphorylation via PKC activation.


Sign in / Sign up

Export Citation Format

Share Document