Effects of phenylephrine on calcium current and contractility of feline ventricular myocytes

1988 ◽  
Vol 255 (5) ◽  
pp. H1173-H1180 ◽  
Author(s):  
H. A. Hartmann ◽  
N. J. Mazzocca ◽  
R. B. Kleiman ◽  
S. R. Houser

Previous studies on numerous cardiac preparations have shown that stimulation of alpha 1-receptors produces a positive inotropic effect. The cellular basis for this effect is not well understood. Isolated feline ventricular myocytes were used in the present study to examine the idea that the increase in contractility induced by stimulation of alpha 1-receptors is produced by an increase in inward Ca2+ current and that this event is caused by the stimulation of protein kinase C (PKC). These experiments showed that phenylephrine (10(-4) M) increased Ca2+ current from 0.56 +/- 0.02 (control) to 1.12 +/- 0.25 nA and increased contractile magnitude by 201 +/- 28%. The effect on Ca2+ current was completely blocked by propranolol (10(-7)M), whereas after beta-receptor blockade, contractile state was still 130 +/- 8% of control levels. alpha 1-Receptor blockade by prazosin eliminated this residual inotropic component of phenylephrine. Lower concentrations of phenylephrine (10(-7)M) were without effect on Ca2+ current and contractility as was stimulation of PCK with 150 nM of a phorbol ester. These results suggest that the positive inotropic effect of alpha 1-receptor stimulation in adult feline ventricular myocytes is not produced by increasing inward Ca2+ current and that this response is also not associated with stimulation of PKC.

2004 ◽  
Vol 107 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Martin E. BEYER ◽  
Tobias HÖVELBORN ◽  
Ursula DELABAR ◽  
Hans Martin HOFFMEISTER

The main aim of the present study was to investigate the direct inotropic effects of stimulation of the endothelin (ET) receptor ETA under in vivo conditions. It is well known that ETA receptor stimulation causes pronounced vasoconstriction. The ET-1-induced coronary vasoconstriction may lead to myocardial ischaemia and, consequently, to cardiodepressor effects that may mask the direct positive inotropic effect of ETA receptor stimulation. Thus, in the present study, steps were taken to avoid this possibility. In anaesthetized open-chest rats the haemodynamic and inotropic effects of ETA receptor stimulation were studied by monitoring responses evoked by ET-1 (1 nmol/kg of body weight) after ETB receptor blockade with BQ 788 (0.5 μmol/kg of body weight); these responses were compared with saline controls (after ETB receptor blockade). To avoid vasoconstrictor effects induced by ETA receptor stimulation, additional experiments were performed in the presence of the vasodilator adenosine (2.0 mg·kg−1 of body weight·min−1). Myocardial function was also examined during aortic clamping so as to circumvent the effect of changes in afterload. We studied further the effect of ETA receptor stimulation on myocardial energy metabolism. ETA receptor stimulation reduced cardiac output (−49% compared with control), raised total peripheral resistance (+173%) and reduced myocardial ATP content (−23%). Aortic clamping did not reveal a positive inotropic effect of ETA receptor stimulation. Furthermore, even though adenosine attenuated the decrease in cardiac output (−21%), the increase of total peripheral resistance (+48%) and prevented the fall of myocardial ATP content (+6%), this did not unmask a positive inotropic effect of ETA receptor stimulation. Thus we conclude that ETA receptor stimulation causes vasoconstriction and myocardial ischaemia, but has no positive inotropic effects in rats.


1971 ◽  
Vol 68 (1_Suppla) ◽  
pp. S5-S38 ◽  
Author(s):  
Helmuth Vorherr

ABSTRACT In lactating rats and rabbits the mode of antagonism of sympathomimetics, angiotensin or pain toward oxytocin-induced milk-ejection was investigated. In rats intra-arterial (intrafemoral) doses of 0.01–0.02 μg or intravenous (iv) doses of 0.1–0.5 μg of either epinephrine, isoproterenol, norepinephrine, angiotensin or 10 μg of phenylephrine injected simultaneously with, or 30 seconds before an oxytocin dose (10 μU intrafemoral, 300 μU iv) greatly inhibited or suppressed the oxytocin response. A 15 second pain stimulus caused moderate inhibition. With alpha-receptor blockade pain, epinephrine, isoproterenol, norepinephrine, phenylephrine and angiotensin inhibition were, respectively, 70%, 75%, 100%, 40%, 0% and 100%. Under beta-receptor blockade the corresponding values were 14%, 40%, 0%, 70%, 100% and 100%; with simultaneous intrafemoral injections neither catecholamine was inhibitory toward oxytocin. In corresponding rabbit experiments approximately 10-fold higher iv drug dosages were applied and similar results were observed. In both species, combined alpha and beta-receptor blockade nearly eliminated the antagonistic actions of sympathomimetics toward oxytocin, whereas angiotensin inhibition persisted unchanged. The results indicate: 1) Mammary myoepithelial cells contain beta-adrenergic receptors but no alpha-receptors; 2) Inhibition of oxytocin-induced milk-ejection by isoproterenol and phenylephrine is meditated through stimulation of myoepithelial beta-receptors (myoepithelial relaxation) and vascular alpha-receptors (vasoconstriction), respectively; 3) Epinephrine and norepinephrine inhibition of milk-ejection is due to stimulation of vascular alpha-receptors and myoepithelial beta-receptors; 4) Angiotensin effects are unrelated to adrenergic receptor mechanisms; 5) Administration of both alpha and beta-adrenergic blockers is desirable for stabilizing the sensitivity of the oxytocin milk-ejection assay preparation against interference from endogenous or exogenous catecholamines; 6) Other than using adrenergic blockers, pharmacologic doses of oxytocin can correct nursing difficulties in animals and man with hyperfunction of the adrenal-sympathetic system.


1996 ◽  
Vol 270 (2) ◽  
pp. H620-H627 ◽  
Author(s):  
T. Asai ◽  
L. M. Shuba ◽  
D. J. Pelzer ◽  
T. F. McDonald

Active and inactive phorbol esters were applied to guinea pig ventricular myocytes to study the responses of L-type Ca2+ (ICa,L) and L-type Na+ (INa,L) currents. Phorbol 12-myristate 13-acetate (PMA) (10-100 rM) never stimulated ICa,L or INa,L and frequently depressed them by 5-30% in a voltage-independent manner. However, the phorbol ester consistently activated delayed-rectifying K+ (IK) and Cl- currents. The inhibition of ICa,L occurred approximately 3 times faster than comonitored stimulation of IK, and ICa,L and INa,L were unaffected by two interventions that suppressed IK stimulation [pretreatment with 50 microM 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and dialysis with pCa 11 versus standard pCa 9 solution]. Inactive phorbol esters 4 alpha-phorbol 12,13-didecanoate (alpha-PDD) and 4 alpha-phorbol had little effect on IK, but alpha-PDD had a PMA-like inhibitory effect on Ca2+ channel currents. We conclude that, unlike the stimulation of IK by PMA, inhibition of Ca2+ channel current by phorbol esters is a protein kinase C-independent action.


1995 ◽  
Vol 73 (11) ◽  
pp. 1651-1660 ◽  
Author(s):  
Gwo-Jyh Chang ◽  
Ming-Jai Su ◽  
Pei-Hong Lee ◽  
Shoei-Sheng Lee ◽  
Karin Chiung-Sheue Liu

The mechanisms of the positive inotropic action of a new synthetic tetrahydroisoquinoline compound, SL-1, were investigated in isolated rat cardiac tissues and ventricular myocytes. SL-1 produced a rapidly developing, concentration-dependent positive inotropic response in both atrial and ventricular muscles and a negative chronotropic effect in spontaneously beating right atria. The positive inotropic effect was not prevented by pretreatment with reserpine (3 mg/kg) or the α-adrenoceptor antagonist prazosin (1 μM), but was suppressed by either the β-adrenoceptor antagonist atenolol (3 μM) or the K+ channel blocker 4-aminopyridine (4AP, 1 mM). In the whole-cell recording study, SL-1 increased the plateau level and prolonged the action potential duration in a concentration-dependent manner and decreased the maximum upstroke velocity [Formula: see text] and amplitude of the action potential in isolated rat ventricular myocytes stimulated at 1.0 Hz. On the other hand, SL-1 had little effect on the resting membrane potential, although it caused a slight decrease at higher concentrations. Voltage clamp experiments revealed that the increase of action potential plateau and prolongation of action potential duration were associated with an increase of Ca2+ inward current (ICa) via the activation of β-adrenoceptors and a prominent inhibition of 4AP-sensitive transient outward K+ current (Ito) with an IC50 of 3.9 μM. Currents through the inward rectifier K+ channel (IKl) were also reduced. The inhibition of Ito is characterized by a reduction in peak amplitude and a marked acceleration of current decay but without changes on the voltage dependence of steady-state inactivation. In addition to the inhibition of K+ currents, SL-1 also inhibited the Na+ inward current (INa) with an IC50 of 5.4 μM, which was correlated with the decrease of [Formula: see text]. We conclude that the positive inotropic effect of SL-1 may be due to an increase in Ca2+ current mediated via partial activation of β-adrenoceptors and an inhibition of K+ outward currents and the subsequent prolongation of action potentials.Key words: SL-1, tetrahydroisoquinoline, inotropic and chronotropic action, action potential, Na+, Ca2+, and K+ currents.


1991 ◽  
Vol 13 (5) ◽  
pp. 509-515 ◽  
Author(s):  
Maria M. de E. de Bracco ◽  
Susana B. Fink ◽  
Marta R. Finiasz ◽  
Enri S. Borda ◽  
Leonor Sterin-Borda

2006 ◽  
Vol 105 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Mark D. Graham ◽  
Philip M. Hopkins ◽  
Simon M. Harrison

Background Halothane has been reported to sensitize Ca(2+) release from the sarcoplasmic reticulum (SR), which is thought to contribute to its initial positive inotropic effect. However, little is known about whether isoflurane or sevoflurane affect the SR Ca(2+) release process, which may contribute to the inotropic profile of these anesthetics. Methods Mild Ca(2+) overload was induced in isolated rat ventricular myocytes by increase of extracellular Ca(2+) to 2 mM. The resultant Ca(2+) transients due to spontaneous Ca(2+) release from the SR were detected optically (fura-2). Cells were exposed to 0.6 mM anesthetic for a period of 4 min, and the frequency and amplitude of spontaneous Ca(2+) transients were measured. Results Halothane caused a temporary threefold increase in frequency and decreased the amplitude (to 54% of control) of spontaneous Ca(2+) transients. Removal of halothane inhibited spontaneous Ca release before it returned to control. In contrast, sevoflurane initially inhibited frequency of Ca(2+) release (to 10% of control), whereas its removal induced a burst of spontaneous Ca(2+) release. Isoflurane had no significant effect on either frequency or amplitude of spontaneous Ca(2+) release on application or removal. Sevoflurane was able to ameliorate the effects of halothane on the frequency and amplitude of spontaneous Ca(2+) release both on application and wash-off. Conclusions Application of halothane and removal of sevoflurane sensitize the SR Ca(2+) release process (and vice versa on removal). Sevoflurane reversed the effects of halothane, suggesting they may act at the same subcellular target on the SR.


1986 ◽  
Vol 64 (12) ◽  
pp. 1484-1488 ◽  
Author(s):  
Alejandro Elizalde ◽  
Jesús Perez-Chavez ◽  
José Sánchez-Chapula

The effects of histamine on the force of contraction and calcium-dependent action potentials were studied in rabbit ventricular papillary muscles. The positive inotropic effect of histamine seems to be dependent on stimulation of H1 and H2 receptors. The H1 antagonist chlorpheniramine produced a competitive blockade of the positive inotropic effects of histamine. Cimetidine produced a competitive blockade, which was apparent only after blockade of H1 receptors. Histamine increased the maximum upstroke velocity of slow action potentials. This effect can be entirely accounted for by stimulation of H2 receptors. The phosphodiesterase inhibitor 3-isobutyl-methyl-xanthine potentiated the H2 receptor mediated effects of histamine on the force of contraction and slow action potentials. We conclude that rabbit ventricular muscle possesses both H1 and H2 receptors that mediate the positive inotropic effect of histamine. The H2-mediated effect seems to be causally related to an increase in the calcium slow inward current and is probably linked to an enhanced cellular cyclic adenosine monophosphate content. The mechanism of the H1-mediated positive inotropic effect remains unknown.


Sign in / Sign up

Export Citation Format

Share Document