Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs

1990 ◽  
Vol 259 (6) ◽  
pp. H1629-H1636 ◽  
Author(s):  
J. E. Krieger ◽  
J. F. Liard ◽  
A. W. Cowley

The sequential hemodynamics, fluid and electrolyte balances, and the hormonal responses to a 7-day high-salt (NaCl) intake were investigated in sodium-depleted conscious dogs (n = 6). Studies were carried out in metabolic cages mounted on sensitive load cells, which enabled continuous 24 h/day monitoring of total body weight (TBW) as an index of changes in body water. Beat-by-beat hemodynamics were determined 24 h/day. Water (700 ml/day iv) intake was maintained constant. Daily fluid and electrolyte balances and hormonal analyses were performed. An increase of daily salt intake from 8 to 120 meq increased TBW 251 +/- 44 g (P less than 0.05), which was sustained thereafter. Average 24-h mean arterial pressure (MAP) and heart rate (HR) remained unchanged. Average cardiac output (CO) increased 11% (P less than 0.05) above control values by day 2, while total peripheral resistance (TPR) decreased proportionally. CO and TPR returned to control values only when low salt was resumed. Blood volume (BV) was unchanged on day 2 as indicated by direct measurement of BV (51Cr-labeled red blood cells) or by analysis of plasma protein concentration. A 92-meq (P less than 0.05) sodium retention was observed initially, and plasma sodium concentration increased slightly. Plasma renin activity, angiotensin II, and aldosterone levels decreased significantly, whereas vasopressin and atrial natriuretic peptide levels remained unchanged. In summary, chronic high-salt intake resulted in a net retention of water and sodium with no changes in MAP, HR, or BV. The rise in CO was offset by a reduction in TPR, which appeared at least in part related to angiotensin II suppression.

1988 ◽  
Vol 75 (2) ◽  
pp. 167-170 ◽  
Author(s):  
Antonio P. Quintanilla ◽  
Maria I. Weffer ◽  
Haengil Koh ◽  
Mohammed Rahman ◽  
Agostino Molteni ◽  
...  

1. We measured ouabain-insensitive adenosine triphosphatase (ATPase), sodium, potassium-dependent adenosine triphosphatase (Na+,K+-ATPase) and intracellular Na+ and K+ in the erythrocytes of 19 healthy volunteers, before and after supplementation of their normal diet with 6.0–8.9 g of salt (102–137 mmol of NaCl) per day, for 5 days. 2. The subjects had a small but significant gain in weight. Mean plasma renin activity decreased from 1.57 to 0.73 pmol of angiotensin I h−1 ml−1 and plasma aldosterone from 0.46 to 0.24 nmol/l. 3. Total ATPase activity fell from 197.9 nmol of inorganic phosphate h−1 mg−1 during the control period to 173.5 during the high-salt period (P < 0.0125). Na+,K+-ATPase activity fell from 162.2 to 141.4 nmol of inorganic phosphate h−1 mg−1 (P < 0.05). Intracellular Na + and intracellular K+ did not change. 4. These results are consistent with the hypothesis that salt-induced volume expansion causes the release of a factor inhibitory to the Na+ pump.


2017 ◽  
Vol 114 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Jiao Lu ◽  
Hong-Wei Wang ◽  
Monir Ahmad ◽  
Marzieh Keshtkar-Jahromi ◽  
Mordecai P Blaustein ◽  
...  

AbstractAimsHigh salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt.Methods and resultsIn protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-β-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta.ConclusionThese results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.


2012 ◽  
Vol 303 (1) ◽  
pp. F130-F138 ◽  
Author(s):  
Yanjie Huang ◽  
Tatsuo Yamamoto ◽  
Taro Misaki ◽  
Hiroyuki Suzuki ◽  
Akashi Togawa ◽  
...  

Despite suppression of the circulating renin-angiotensin system (RAS), high salt intake (HSI) aggravates kidney injury in chronic kidney disease. To elucidate the effect of HSI on intrarenal RAS, we investigated the levels of intrarenal prorenin, renin, (pro)renin receptor (PRR), receptor-mediated prorenin activation, and ANG II in chronic anti-thymocyte serum (ATS) nephritic rats on HSI. Kidney fibrosis grew more severe in the nephritic rats on HSI than normal salt intake. Despite suppression of plasma renin and ANG II, marked increases in tubular prorenin and renin proteins without concomitant rises in renin mRNA, non-proteolytically activated prorenin, and ANG II were noted in the nephritic rats on HSI. Redistribution of PRR from the cytoplasm to the apical membrane, along with elevated non-proteolytically activated prorenin and ANG II, was observed in the collecting ducts and connecting tubules in the nephritic rats on HSI. Olmesartan decreased cortical prorenin, non-proteolytically activated prorenin and ANG II, and apical membranous PRR in the collecting ducts and connecting tubules, and attenuated the renal lesions. Cell surface trafficking of PRR was enhanced by ANG II and was suppressed by olmesartan in Madin-Darby canine kidney cells. These data suggest the involvement of the ANG II-dependent increase in apical membrane PRR in the augmentation of intrarenal binding of prorenin and renin, followed by nonproteolytic activation of prorenin, enhancement of renin catalytic activity, ANG II generation, and progression of kidney fibrosis in the nephritic rat kidneys on HSI. The origin of the increased tubular prorenin and renin remains to be clarified. Further studies measuring the urinary prorenin and renin are needed.


2014 ◽  
Vol 144 (10) ◽  
pp. 1571-1578 ◽  
Author(s):  
Isis A. Katayama ◽  
Rafael C. Pereira ◽  
Ellen P. B. Dopona ◽  
Maria H. M. Shimizu ◽  
Luzia N. S. Furukawa ◽  
...  

2007 ◽  
Vol 293 (1) ◽  
pp. R251-R256 ◽  
Author(s):  
Martha Franco ◽  
Flavio Martínez ◽  
Yasmir Quiroz ◽  
Othir Galicia ◽  
Rocio Bautista ◽  
...  

Renal immune cell infiltration and cells expressing angiotensin II (AII) in tubulointerstitial areas of the kidney are features of experimental models of salt-sensitive hypertension (SSHTN). A high-salt intake tends to suppress circulating AII levels, but intrarenal concentrations of AII have not been investigated in SSHTN. This study explored the relationship between these features to gain insight into the pathophysiology of SSHTN. Plasma angiotensin II (AII) and renal interstitial AII (microdialysis technique) and the infiltration of macrophages, lymphocytes, and AII-positive cells were determined in SSHTN induced by 5 wk of a high-salt diet (HSD) after short-term infusion of AII in rats with ( n = 10) and without ( n = 11) treatment with mycophenolate mofetil (MMF) and in control rats fed a high- ( n = 7) and normal ( n = 11) salt diet. As in previous studies, MMF did not affect AII-associated hypertension but reduced the interstitial inflammation and the SSHTN in the post-AII-period. During the HSD period, the AII group untreated with MMF had mean ± SD) low plasma (2.4 ± 1.4 pg/ml) and high interstitial AII concentration (1,310 ± 208 pg/ml); MMF treatment resulted in a significantly lower interstitial AII (454 ± 128 pg/ml). Renal AII concentration and the number of tubulointerstitial AII-positive cells were correlated. Blood pressure correlated positively with interstitial AII and negatively with plasma AII, thus giving compelling evidence of the paramount role of the AII within the kidney in the AII-induced model of salt-driven hypertension.


2015 ◽  
Vol 38 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Libor Kopkan ◽  
Zuzana Husková ◽  
Šárka Jíchová ◽  
Lenka Červenková ◽  
Luděk Červenka ◽  
...  

2021 ◽  
Author(s):  
Yosuke Sekii ◽  
Hiroshi Kiuchi ◽  
Kentaro Takezawa ◽  
Takahiro Imanaka ◽  
Sohei Kuribayashi ◽  
...  

Abstract Nocturnal polyuria is the most frequent cause of nocturia, a common disease associated with a compromised quality of life and increased mortality. Its pathogenesis is complex, and the detailed underlying mechanism remains unknown. Herein, we report that concomitant intake of a high-salt diet and reduced nitric oxide (NO) production achieved through Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) administration in mice resulted in nocturnal polyuria recapitulating the clinical features in humans. High salt intake under reduced NO production overactivated the angiotensin II-SPAK (STE20/SPS1-related proline–alanine-rich protein kinase)-NCC (sodium chloride co-transporter) pathway in the kidney, resulting in the insufficient excretion of sodium during the day and its excessive excretion at night. Excessive Na excretion at night in turn leads to nocturnal polyuria due to osmotic diuresis. Our study identified a central role for the intrarenal angiotensin II-SPAK-NCC pathway in the pathophysiology of nocturnal polyuria, highlighting its potential as a promising therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document