Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension

2007 ◽  
Vol 293 (1) ◽  
pp. R251-R256 ◽  
Author(s):  
Martha Franco ◽  
Flavio Martínez ◽  
Yasmir Quiroz ◽  
Othir Galicia ◽  
Rocio Bautista ◽  
...  

Renal immune cell infiltration and cells expressing angiotensin II (AII) in tubulointerstitial areas of the kidney are features of experimental models of salt-sensitive hypertension (SSHTN). A high-salt intake tends to suppress circulating AII levels, but intrarenal concentrations of AII have not been investigated in SSHTN. This study explored the relationship between these features to gain insight into the pathophysiology of SSHTN. Plasma angiotensin II (AII) and renal interstitial AII (microdialysis technique) and the infiltration of macrophages, lymphocytes, and AII-positive cells were determined in SSHTN induced by 5 wk of a high-salt diet (HSD) after short-term infusion of AII in rats with ( n = 10) and without ( n = 11) treatment with mycophenolate mofetil (MMF) and in control rats fed a high- ( n = 7) and normal ( n = 11) salt diet. As in previous studies, MMF did not affect AII-associated hypertension but reduced the interstitial inflammation and the SSHTN in the post-AII-period. During the HSD period, the AII group untreated with MMF had mean ± SD) low plasma (2.4 ± 1.4 pg/ml) and high interstitial AII concentration (1,310 ± 208 pg/ml); MMF treatment resulted in a significantly lower interstitial AII (454 ± 128 pg/ml). Renal AII concentration and the number of tubulointerstitial AII-positive cells were correlated. Blood pressure correlated positively with interstitial AII and negatively with plasma AII, thus giving compelling evidence of the paramount role of the AII within the kidney in the AII-induced model of salt-driven hypertension.

1992 ◽  
Vol 83 (1) ◽  
pp. 13-22 ◽  
Author(s):  
J. Bouhnik ◽  
J. P. Richoux ◽  
H. Huang ◽  
F. Savoie ◽  
T. Baussant ◽  
...  

1. The renin-angiotensin and kinin-kallikrein systems of Dahl salt-sensitive and salt-resistant rats fed diets with different salt contents were analysed using biochemical and immunocytochemical techniques. 2. Blood pressure increased by 45% in salt-sensitive rats only, after 4 weeks on a high-salt diet. The plasma renin activity and plasma angiotensin II concentration remained at the same levels in salt-sensitive rats on the high-salt diet as on the normal salt diet, whereas the plasma renin activity and plasma angiotensin II concentration of salt-resistant rats fed the high-salt diet were lower. The plasma renin activity and the plasma angiotensin II concentration were elevated in both salt-resistant and salt-sensitive rats fed the salt-deficient diet but were much more elevated in salt-resistant than in salt-sensitive rats. 3. The kidney immunocytochemical data paralleled the data on plasma parameters. Salt-sensitive rats had fewer renin positive juxtaglomerular apparatuses than salt-resistant rats on the normal diet, and the increase on the sodium-deficient diet was also smaller in salt-sensitive rats. Salt-sensitive rats fed the high-salt diet and the standard diet had almost no angiotensin II immunoreactivity compared with the salt-resistant rats on the same diets. 4. The total renal kallikrein content of salt-sensitive rats was lower than that of salt-resistant rats on all three diets, as was the amount of kallikrein excreted in the urine on the standard and the high-salt diets. The differences resulted from a reduction in active kallikrein. The increase in kallikrein in salt-sensitive and salt-resistant rats on the salt-deficient diet was not significantly different. 5. There were similar changes in immunopositive kallikrein in the kidneys of salt-sensitive and salt-resistant rats with diet, with a large increase in kallikrein biosynthesis on the low-salt diet. The plasma concentration of high-molecular-mass kininogen was not significantly different in salt-sensitive and salt-resistant rats, but there was a significant increase in T-kininogen in salt-sensitive rats fed the high-salt diet. 6. In conclusion, the absence of decreases in the plasma renin activity and the plasma angiotensin II concentration in salt-sensitive rats fed the high-salt diet might partially explain the increase in blood pressure.


1996 ◽  
Vol 271 (1) ◽  
pp. R109-R114 ◽  
Author(s):  
S. W. John ◽  
A. T. Veress ◽  
U. Honrath ◽  
C. K. Chong ◽  
L. Peng ◽  
...  

Atrial natriuretic peptide (ANP)-gene knockout mice of three genotypes (+/+, +/-, and -/-) were maintained on a low-salt diet (0.008% NaCl). They were then fed either the same low-salt diet or a high-salt diet (8% NaCl) for 1 wk. No differences were found among genotypes in daily food and water intakes or in urinary volume and electrolyte excretions. Arterial blood pressures measured in anesthetized animals at the end of the dietary regimen were significantly and similarly increased in -/- compared with +/+ mice on each diet. Renal excretion of fluid and electrolytes was measured in anesthetized mice before and after acute blood volume expansion. No genotype differences were observed before volume expansion. After volume expansion the wild-type (+/+) mice had much greater saluretic responses than either the heterozygous (+/-) or the homozygous mutant (-/-) animals on the low-salt diet but not on the high-salt diet. We conclude that ANP lowers blood pressure in the absence of detected changes in renal function; ANP is not essential for normal salt balance, even on high-salt intake; and ANP is essential for the natriuretic response to acute blood volume expansion on a low-salt but not high-salt intake.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yulia Grigorova ◽  
Wen Wei ◽  
Valentina Zernetkina ◽  
Ondrej Juhasz ◽  
Edward Lakatta ◽  
...  

Background: Marinobufagenin (MBG), an endogenous cardiotonic steroid, is a Na/K-ATPase inhibitor and a vasoconstrictor. Previously it was demonstrated, that administration of 3E9 anti-MBG-antibody (mAb) reduced blood pressure (BP) and reversed left ventricular fibrosis in animal models of salt-sensitive hypertension and nephropathy. In the present study we investigated whether mAb alleviates BP and vascular remodeling in normotensive rats on a high salt intake. Methods: Wistar rats (5 months old) received normal salt diet (CTRL; n=8) or high salt intake (2% NaCl in drinking water) for 4 weeks. Rats on a high salt were administered vehicle (SALT; n=8) or mAb (50 ug/kg) (SALT-AB; n=8) 3 times during the last week of a high salt diet. BP was measured at baseline, after 3 and 4 weeks of experiment. Na/K-ATPase activity was measured in erythrocytes. Aortas were weighed, and were used to study sensitivity to the vasorelaxant effect of sodium nitroprusside (SNP), and for the histochemistry analysis of collagen deposition. Renal 24-hr MBG excretion was measured at week 4. Results: In SALT vs. CTRL, in the absence of BP changes, elevated levels of MBG (14.1±1.1 vs. 9.0±1.6 pmol/24hr, p<0.05) were associated with inhibition of erythrocyte Na/K-ATPase (12.6±0.3 vs. 14.2±0.35 μmol Pi/ml/hr, p<0.05), increased aortic weights (217±15 vs. 158±9 mg/kg BW, p<0.01), increased levels of collagen in aorta (2.5-fold; p<0.05), and compromised SNP vasorelaxant effect in aortic explants (EC50=167±19.3 nM vs. 99±2.0 nM; P<0.01). Antibody treatment in SALT-AB vs. SALT increased Na/K-ATPase activity (13.93±0.54 μmol Pi/ml/hr, p<0.05), reduced the aortic weight (180±12 mg/kg; P<0.05) and collagen deposition 3-fold (P<0.05), and restored the vasorelaxation of aortic rings by SNP to the levels in CTRL (70±1.5 nM, p<0.01). Conclusion: These findings for the first time demonstrated that in normotensive rats on a high salt intake heightened MBG levels induced vascular fibrosis and impairment of vasorelaxation in the absence of blood pressure changes. Immunoneutralization of MBG reversed these changes. Thus, high dietary NaCl intake in normotensive animals can stimulate vascular fibrosis via pressure-independent/ MBG-dependent mechanisms, and this remodeling is reversible.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 158-168
Author(s):  
Ailsa F. Ralph ◽  
Celine Grenier ◽  
Hannah M. Costello ◽  
Kevin Stewart ◽  
Jessica R. Ivy ◽  
...  

Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na + ) to high salt (3% Na + ) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure–depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1461-1469
Author(s):  
Franco Puleo ◽  
Kiyoung Kim ◽  
Alissa A. Frame ◽  
Kathryn R. Walsh ◽  
Mohammed Z. Ferdaus ◽  
...  

Increased sympathoexcitation and renal sodium retention during high salt intake are hallmarks of the salt sensitivity of blood pressure. The mechanism(s) by which excessive sympathetic nervous system release of norepinephrine influences renal sodium reabsorption is unclear. However, studies demonstrate that norepinephrine can stimulate the activity of the NCC (sodium chloride cotransporter) and promote the development of SSH (salt-sensitive hypertension). The adrenergic signaling pathways governing NCC activity remain a significant source of controversy with opposing studies suggesting a central role of upstream α 1 - and β-adrenoceptors in the canonical regulatory pathway involving WNKs (with-no-lysine kinases), SPAK (STE20/SPS1-related proline alanine-rich kinase), and OxSR1 (oxidative stress response 1). In our previous study, α 1 -adrenoceptor antagonism in norepinephrine-infused male Sprague-Dawley rats prevented the development of norepinephrine-evoked SSH in part by suppressing NCC activity and expression. In these studies, we used selective adrenoceptor antagonism in male Dahl salt–sensitive rats to test the hypothesis that norepinephrine-mediated activation of the NCC in Dahl SSH occurs via an α 1 -adrenoceptor dependent pathway. A high-salt diet evoked significant increases in NCC activity, expression, and phosphorylation in Dahl salt–sensitive rats that developed SSH. Increases were associated with a dysfunctional WNK1/4 dynamic and a failure to suppress SPAK/OxSR1 activity. α 1 -adrenoceptor antagonism initiated before high-salt intake or following the establishment of SSH attenuated blood pressure in part by suppressing NCC activity, expression, and phosphorylation. Collectively, our findings support the existence of a norepinephrine-activated α 1 -adrenoceptor gated pathway that relies on WNK/SPAK/OxSR1 signaling to regulate NCC activity in SSH.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eliane F. E. Wenstedt ◽  
Lisanne Beugelink ◽  
Esmee M. Schrooten ◽  
Emma Rademaker ◽  
Nienke M. G. Rorije ◽  
...  

AbstractThe retinal microcirculation is increasingly receiving credit as a relatively easily accessible microcirculatory bed that correlates closely with clinical cardiovascular outcomes. The effect of high salt (NaCl) intake on the retinal microcirculation is currently unknown. Therefore, we performed an exploratory randomized cross-over dietary intervention study in 18 healthy males. All subjects adhered to a two-week high-salt diet and low-salt diet, in randomized order, after which fundus photographs were taken and assessed using a semi-automated computer-assisted program (SIVA, version 4.0). Outcome parameters involved retinal venular and arteriolar tortuosity, vessel diameter, branching angle and fractal dimension. At baseline, participants had a mean (SD) age of 29.8 (4.4) years and blood pressure of 117 (9)/73 (5) mmHg. Overall, high-salt diet significantly increased venular tortuosity (12.2%, p = 0.001). Other retinal parameters were not significantly different between diets. Changes in arteriolar tortuosity correlated with changes in ambulatory systolic blood pressure (r = − 0.513; p = 0.04). In conclusion, high-salt diet increases retinal venular tortuosity, and salt-induced increases in ambulatory systolic blood pressure associate with decreases in retinal arteriolar tortuosity. Besides potential eye-specific consequences, both phenomena have previously been associated with hypertension and other cardiovascular risk factors, underlining the deleterious microcirculatory effects of high salt intake.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Daniele Nunes Ferreira ◽  
Isis A. Katayama ◽  
Ivone B. Oliveira ◽  
Kaleizu T. Rosa ◽  
Michella S. Coelho ◽  
...  

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Nuno Pires ◽  
Bruno Igreja ◽  
Eduardo Moura ◽  
Maria João Bonifácio ◽  
Paula Serrão ◽  
...  

Loss of salt-inducible kinase 1 (SIK1) triggers an increase in blood pressure (BP) upon a chronic high-salt intake in mice (Circ Res 2015;116:642-52). Here, we address possible acute mechanisms that may relate to the observed high BP in mice lacking SIK1. SIK1 knockout ( sik1 -/- ) and wild-type ( sik1 +/+ ) littermate mice were challenged for seven days with a normal- (0.3% NaCl) or high-salt (8% NaCl) diet. Systolic BP (SBP) was significantly increased in sik1 -/- mice (137.0±17.2 mmHg) after seven days of high-salt intake, as compared to sik1 +/+ mice counterparts (120.6±4.5 mmHg). The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) were assayed in order to investigate the possible causes for the increase in SBP in sik1 -/- mice fed a high-salt diet. No differences in renin (normal-salt: 463.4±17.9, high-salt: 462.9±28.9 pg/ml) and angiotensin II (normal-salt: 45.8±10.0, high-salt: 39.0±8.5 pg/ml) serum levels were observed. The activity of dopamine β-hydroxylase (DβH), the enzyme that converts dopamine (DA) to norepinephrine (NE), was significantly increased in the adrenal glands of sik1 -/- mice fed a high-salt diet (356.7±32.8 nmol/mg protein) as compared to sik1 -/- mice on a normal-salt diet (184.4±14.4 nmol/mg protein). Similarly, urinary catecholamines (DA, NE, epinephrine) and L-DOPA were significantly increased (3- to 7-fold increase) in sik1 -/- mice fed a high-salt diet as compared to sik1 -/- mice on a normal-salt intake. Altogether, this data supports the view that sik1 -/- mice fed a high-salt diet develop SNS overactivity. Next, we addressed the question if reducing SNS activity in sik1 -/- mice fed a high-salt diet would ameliorate hypertension. For that purpose, the effect of etamicastat, a peripheral reversible DβH inhibitor, was evaluated on the development of high BP upon high-salt diet. Etamicastat treatment (50 mg/kg/day), started prior to high-salt feeding, completely prevented SBP increase in sik1 -/- mice fed a high-salt diet (116.8±4.7 mmHg). It is concluded that the SNS is involved in the development of salt-induced hypertension in sik1 -/- mice and that the DβH inhibitor etamicastat is able to reduce SNS overactivity and high BP in this mouse model of hypertension.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Peng Xu ◽  
John J Gildea ◽  
Mahabuba Akhter ◽  
Robert M Carey ◽  
Wei Yue ◽  
...  

Salt sensitivity affects approximately 20% of adults worldwide and has similar mortality and morbidity sequalae as hypertension. Research has focused on the harmful effects of a high salt diet but have not focused on the harmful effects of a low salt diet. Inverse salt sensitive (ISS) individuals require high salt intake in order to maintain a normal blood pressure. Aldosterone increases ENaC and sodium reabsorption via the mineralocorticoid receptor (MR). We previously reported that αENaC was significantly lower in ISS renal tubule cells isolated from urine (uRTC), while these cells showed higher ENaC like activities under trypsin stimulation. We hypothesized that aldosterone may act as a stimulus and play a role in ISS high blood pressure on a low salt diet (LSD). Plasma aldosterone was significantly increased on LSD in all salt study participants, and ISS individuals showed the highest aldosterone level (ISS HS 3.8±0.38, n=26; ISS LS 35±3.38, n=22; SR HS 4.34±0.18, n=180; SR LS 32.62±1.6, n=152; SS HS 4.65±0.35, n=43; SS LS 26.08±2.18, n=38; HS Vs LS, p<0.001, two-way ANOVA). Moreover, both aldosterone and plasma renin activity (PRA) were significantly lower in salt sensitive (SS) individuals on LSD (PRA LS: ISS 6.05±0.87, n=17; SR 5.94±0.36, n=108; SS 4.43±0.57, n=34; p<0.05, one-way ANOVA), indicating LSD was protective to SS individuals. Treatment of uRTCs with 1 μM aldosterone increased MR and αENaC expression in ISS but not in SR (salt resistant) cells (MR: SR VEH 12164±213; SR Aldosterone 12327±128; ISS VEH 12128±40 vs ISS Aldosterone 13506±128, n=3, p<0.001, two-way ANOVA; αENaC: SR VEH 5023±46; SR Aldosterone 4895±55; ISS VEH 4270±21 vs ISS Aldosterone 5013±113, n=3, p<0.001, two-way ANOVA). High salt treatment further decreased MR in ISS but not in SR cells (ISS: 142mM 11066±188 vs 192mM 10425±74; p<0.05, n=3 two-way ANOVA). These results are consistent with the hypothesis that ISS individuals retain excess Na + and exhibit decreased BP when compared to SR or SS individuals under high salt diet, but reabsorb more sodium and exhibit elevated blood pressure under low salt diet. Higher circulating aldosterone and ex-vivo urine derived renal cell aldosterone sensitivity under low salt conditions may be a novel diagnostic test to identify ISS individuals.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
QING ZHU ◽  
JUNPING HU ◽  
ZHENGCHAO WANG ◽  
PIN-LAN LI ◽  
NINGJUN LI

HIF prolyl-hydroxylase 2 (PHD2) is an enzyme to promote the degradation of transcription factor hypoxia inducible factor (HIF)-1α. We have previously shown that high salt intake stimulates the expression of microRNA (miR)-429, which promotes the decay of HIF prolyl-hydroxylase 2 (PHD2) mRNA, and that reduction of PHD2 mRNA level leads to the accumulation of HIF-1α and activation of many HIF-1α-regulated antihypertensive genes such as nitric oxide synthase (NOS) 2 and heme oxygenase 1 in the renal medulla. This miR-429-mediated regulation of PHD2/HIF-1α pathway is an important molecular adaptation to promote extra sodium excretion and maintain blood pressure. However the high salt-induced increase in the renal medullary miR-429 level was impaired in Dahl S rat, a salt-sensitive hypertension model. The present study determined whether overexpression of miR-429 would reduce the levels of PHD2 mRNA, increase the expression of HIF-1α target genes in the renal medulla, and consequently attenuate salt-sensitive hypertension in Dahl S rats. Renal medullary miR-429 levels were increased by 2-fold via transfection of miR-429-expressing plasmid into the renal medulla in Dahl S rats, which was accompanied by 40% (0.4 of 1) decrease in PHD2 mRNA levels and 2-fold increase in NOS2 mRNA expression compared with scramble-miR-treated rats. Functionally, chronic high salt-induced sodium retention was remarkably reduced from 28.6 ± 2.4 mmole/kg in control rats to 18.5 ± 1.6 mmole/kg in miR-429-treated rats. Furthermore, hypertension induced by 2-week high salt intake was significantly attenuated in miR-429-treated rats. The mean arterial pressure in these Dahl S rats was 111.8 ± 1.7 mmHg on a low salt diet, 143.7 ± 4.1 on a high salt diet, and 128.6 ± 2.2 on a high salt diet treated with miR-429 plasmids, respectively. These results suggest that the impaired miR-429-mediated PHD2 inhibition in response to high salt intake in the renal medulla may represent a novel mechanism for hypertension in Dahl S rats and that correction of this impairment in miR-429 could be a therapeutic approach for salt-sensitive hypertension.


Sign in / Sign up

Export Citation Format

Share Document