Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function

1993 ◽  
Vol 265 (2) ◽  
pp. H747-H754 ◽  
Author(s):  
O. Ellingsen ◽  
A. J. Davidoff ◽  
S. K. Prasad ◽  
H. J. Berger ◽  
J. P. Springhorn ◽  
...  

We studied primary short-term cultures of adult rat ventricular myocytes in defined medium to determine whether phenotype and electromechanical function are maintained in rod-shaped, quiescent cells. Although > 80% of the myocytes retained their rod-shaped in vivo morphology for up to 72 h, contractile function as measured by cell edge motion declined 30-50% from 6 to 24 h, paralleling a 68% shortening of action potential duration. From 24 to 72 h, contractility remained unchanged. Ca2+ channel current density increased 55% after 24-48 h and then returned to the level of freshly isolated cells (9 +/- 1 pA/pF, mean +/- SE). Resting membrane potential (-71 +/- 1 mV) and action potential overshoot (34 +/- 3 mV) did not change. The ratio of alpha- to beta-myosin heavy chain mRNA and the level of cardiac alpha-actin mRNA were maintained for 8 days. Thus quiescent adult rat ventricular myocytes in defined medium undergo extensive phenotypic adaptation within 72 h of isolation, despite maintenance of a rod-shaped morphology and stable levels of contractile protein mRNA, which may limit their suitability for electrophysiological and contractile function studies.

2002 ◽  
Vol 283 (2) ◽  
pp. H461-H467 ◽  
Author(s):  
Hai Ling Li ◽  
Jun Suzuki ◽  
Evelyn Bayna ◽  
Fu-Min Zhang ◽  
Erminia Dalle Molle ◽  
...  

Lipopolysaccharide (LPS) from gram-negative bacteria circulates in acute, subacute, and chronic conditions. It was hypothesized that LPS directly induces cardiac apoptosis. In adult rat ventricular myocytes (isolated with depyrogenated digestive enzymes to minimize tolerance), LPS (10 ng/ml) decreased the ratio of Bcl-2 to Bax at 12 h; increased caspase-3 activity at 16 h; and increased annexin V, propidium iodide, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining at 24 h. Apoptosis was blocked by the caspase inhibitor benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone (Z-VAD-fmk), captopril, and angiotensin II type 1 receptor (AT1) inhibitor (losartan), but not by inhibitors of AT2 receptors (PD-123319), tumor necrosis factor-α (TNFRII:Fc), or nitric oxide ( N G-monomethyl-l-arginine). Angiotensin II (100 nmol/l) induced apoptosis similar to LPS without additive effects. LPS in vivo (1 mg/kg iv) increased apoptosis in left ventricular myocytes for 1–3 days, which dissipated after 1–2 wk. Losartan (23 mg · kg−1 · day−1 in drinking water for 3 days) blocked LPS-induced in vivo apoptosis. In conclusion, low levels of LPS induce cardiac apoptosis in vitro and in vivo by activating AT1 receptors in myocytes.


1998 ◽  
Vol 274 (6) ◽  
pp. H1902-H1913 ◽  
Author(s):  
David A. Golod ◽  
Rajiv Kumar ◽  
Ronald W. Joyner

Action potential conduction through the atrium and the ventricle of the heart depends on the membrane properties of the atrial and ventricular cells, particularly with respect to the determinants of the initiation of action potentials in each cell type. We have utilized both current- and voltage-clamp techniques on isolated cells to examine biophysical properties of the two cell types at physiological temperature. The resting membrane potential, action potential amplitude, current threshold, voltage threshold, and maximum rate of rise measured from atrial cells (−80 ± 1 mV, 109 ± 3 mV, 0.69 ± 0.05 nA, −59 ± 1 mV, and 206 ± 17 V/s, respectively; means ± SE) differed significantly ( P < 0.05) from those values measured from ventricular cells (−82.7 ± 0.4 mV, 127 ± 1 mV, 2.45 ± 0.13 nA, −46 ± 2 mV, and 395 ± 21 V/s, respectively). Input impedance, capacitance, time constant, and critical depolarization for activation also were significantly different between atrial (341 ± 41 MΩ, 70 ± 4 pF, 23.8 ± 2.3 ms, and 19 ± 1 mV, respectively) and ventricular (16.5 ± 5.4 MΩ, 99 ± 4.3 pF, 1.56 ± 0.32 ms, and 36 ± 1 mV, respectively) cells. The major mechanism of these differences is the much greater magnitude of the inward rectifying potassium current in ventricular cells compared with that in atrial cells, with an additional difference of an apparently lower availability of inward Na current in atrial cells. These differences in the two cell types may be important in allowing the atrial cells to be driven successfully by normal regions of automaticity (e.g., the sinoatrial node), whereas ventricular cells would suppress action potential initiation from a region of automaticity (e.g., an ectopic focus).


2008 ◽  
Vol 294 (1) ◽  
pp. H524-H531 ◽  
Author(s):  
Glenn C. Rodrigo ◽  
Nilesh J. Samani

Current cellular models of ischemic preconditioning (IPC) rely on inducing preconditioning in vitro and may not accurately represent complex pathways triggered by IPC in the intact heart. Here, we show that it is possible to precondition the intact heart and to subsequently isolate individual ventricular myocytes that retain the protection triggered by IPC. Myocytes isolated from Langendorff-perfused hearts preconditioned with three cycles of ischemia-reperfusion were exposed to metabolic inhibition and reenergization. Injury was assessed from induction of hypercontracture and loss of Ca2+ homeostasis and contractile function. IPC induced an immediate window of protection in isolated myocytes, with 64.3 ± 7.6% of IPC myocytes recovering Ca2+ homeostasis compared with 16.9 ± 2.4% of control myocytes ( P < 0.01). Similarly, 64.1 ± 5.9% of IPC myocytes recovered contractile function compared with 15.3 ± 2.2% of control myocytes ( P < 0.01). Protection was prevented by the presence of 0.5 mM 5-hydroxydecanoate during the preconditioning stimulus. This early protection disappeared after 6 h, but a second window of protection developed 24 h after preconditioning, with 54.9 ± 4.7% of preconditioned myocytes recovering Ca2+ homeostasis compared with 12.6 ± 2.9% of control myocytes ( P < 0.01). These data show that “true” IPC of the heart confers both windows of protection in the isolated myocytes, with a similar temporal relationship to in vivo preconditioning of the whole heart. The model should allow future studies in isolated cells of the protective mechanisms induced by true ischemia.


Circulation ◽  
2003 ◽  
Vol 108 (20) ◽  
pp. 2530-2535 ◽  
Author(s):  
Toshiaki Izumi ◽  
Yasuki Kihara ◽  
Nobuaki Sarai ◽  
Takeshi Yoneda ◽  
Yoshitaka Iwanaga ◽  
...  

1997 ◽  
Vol 272 (4) ◽  
pp. H1741-H1750 ◽  
Author(s):  
L. H. Xie ◽  
M. Takano ◽  
A. Noma

The ATP-sensitive K+ current (I(K,ATP)), the inward rectifier K+ current (I(K1)), and the acetylcholine-activated K+ current (I(K,ACh)) were recorded in fetal, neonatal, and adult rat ventricular myocytes using the patch-clamp technique. The density (pA/pF) of I(K1) increased from gestation day 10 through neonatal day 1 and then decreased after neonatal day 30. The density of I(K,ATP) activated maximally by metabolic inhibition changed in parallel with the I(K1) density, and the density of I(K,ATP) channel distribution was 1.3 times higher than that of I(K1) throughout the development. We failed to observe developmental changes in the single-channel conductance and the mean open time of I(K1) and I(K,ATP) channels. However, the open probability of the I(K,ATP) channel was lower in fetuses, and the sensitivity to ATP was highest in 1-day neonates. I(K,ACh) were present in the ventricle at all stages of development but at a much lower density than in atrium. The relationship between the resting membrane potential and the development of the inwardly rectifying K-channel family is discussed.


2009 ◽  
Vol 296 (6) ◽  
pp. H1983-H1993 ◽  
Author(s):  
Deepa S. De Silva ◽  
Richard M. Wilson ◽  
Christoph Hutchinson ◽  
Peter C. Ip ◽  
Anthony G. Garcia ◽  
...  

Aldosterone induces extracellular signal-regulated kinase (ERK)-dependent cardiac remodeling. Fenofibrate improves cardiac remodeling in adult rat ventricular myocytes (ARVM) partly via inhibition of aldosterone-induced ERK1/2 phosphorylation and inhibition of matrix metalloproteinases. We sought to determine whether aldosterone caused apoptosis in cultured ARVM and whether fenofibrate ameliorated the apoptosis. Aldosterone (1 μM) induced apoptosis by increasing terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei in ARVM. Spironolactone (100 nM), an aldosterone receptor antagonist, but not RU-486, a glucocorticoid receptor, inhibited aldosterone-mediated apoptosis, indicating that the mineralocorticoid receptor (MR) plays a role. SP-600125 (3 μM)—a selective inhibitor of c-Jun NH2-terminal kinase (JNK)—inhibited aldosterone-induced apoptosis in ARVM. Although aldosterone increased the expression of both stress-activated protein kinases, pretreatment with fenofibrate (10 μM) decreased aldosterone-mediated apoptosis by inhibiting only JNK phosphorylation and the aldosterone-induced increases in Bax, p53, and cleaved caspase-3 and decreases in Bcl-2 protein expression in ARVM. In vivo studies demonstrated that chronic fenofibrate (100 mg·kg body wt−1·day−1) inhibited myocardial Bax and increased Bcl-2 expression in aldosterone-induced cardiac hypertrophy. Similarly, eplerenone, a selective MR inhibitor, used in chronic pressure-overload ascending aortic constriction inhibited myocardial Bax expression but had no effect on Bcl-2 expression. Therefore, involvement of JNK MAPK-dependent mitochondrial death pathway mediates ARVM aldosterone-induced apoptosis and is inhibited by fenofibrate, a peroxisome proliferator-activated receptor (PPAR)α ligand. Fenofibrate mediates beneficial effects in cardiac remodeling by inhibiting programmed cell death and the stress-activated kinases.


1991 ◽  
Vol 97 (5) ◽  
pp. 973-1011 ◽  
Author(s):  
M Apkon ◽  
J M Nerbonne

Depolarization-activated outward K+ currents in isolated adult rat ventricular myocytes were characterized using the whole-cell variation of the patch-clamp recording technique. During brief depolarizations to potentials positive to -40 mV, Ca(2+)-independent outward K+ currents in these cells rise to a transient peak, followed by a slower decay to an apparent plateau. The analyses completed here reveal that the observed outward current waveforms result from the activation of two kinetically distinct voltage-dependent K+ currents: one that activates and inactivates rapidly, and one that activates and inactivates slowly, on membrane depolarization. These currents are referred to here as Ito (transient outward) and IK (delayed rectifier), respectively, because their properties are similar (although not identical) to these K+ current types in other cells. Although the voltage dependences of Ito and IK activation are similar, Ito activates approximately 10-fold and inactivates approximately 30-fold more rapidly than IK at all test potentials. In the composite current waveforms measured during brief depolarizations, therefore, the peak current predominantly reflects Ito, whereas IK is the primary determinant of the plateau. There are also marked differences in the voltage dependences of steady-state inactivation of these two K+ currents: IK undergoes steady-state inactivation at all potentials positive to -120 mV, and is 50% inactivated at -69 mV; Ito, in contrast, is insensitive to steady-state inactivation at membrane potentials negative to -50 mV. In addition, Ito recovers from steady-state inactivation faster than IK: at -90 mV, for example, approximately 70% recovery from the inactivation produced at -20 mV is observed within 20 ms for Ito; IK recovers approximately 25-fold more slowly. The pharmacological properties of Ito and IK are also distinct: 4-aminopyridine preferentially attenuates Ito, and tetraethylammonium suppresses predominantly IK. The voltage- and time-dependent properties of these currents are interpreted here in terms of a model in which Ito underlies the initial, rapid repolarization phase of the action potential (AP), and IK is responsible for the slower phase of AP repolarization back to the resting membrane potential, in adult rat ventricular myocytes.


2006 ◽  
Vol 20 (5) ◽  
Author(s):  
Sabine Telemaque ◽  
Daniel S‐D Liu ◽  
Terrie Grain ◽  
Meei‐Yueh Liu ◽  
S. Jesse Liu

1997 ◽  
Vol 272 (1) ◽  
pp. H159-H167 ◽  
Author(s):  
A. J. Davidoff ◽  
J. Ren

One of the most prominent myocardial defects associated with diabetes is abnormal diastole. We have recently reported that this dysfunction involves prolonged relaxation (relengthening) in isolated ventricular myocytes that occurs within days after the induction of diabetes. The present study was designed to evaluate the role of insulin and glucose int he etiology of this dysfunction with a serum-free myocyte culture system. Adult rat ventricular myocytes were cultured for 1-4 days in a “"diabetic-like” medium containing five times less insulin and approximately five times more glucose than in our normal medium. Mechanical properties and Ca2+ transients (fura 2) were evaluated with a high-resolution (120-Hz) video-based edge-detection/spectro-fluormetric system. The cells were field stimulated to contract at slow and physiologically relevant rates, and indexes of contraction and relaxation were evaluated. Relengthening was markedly longer in myocytes cultured in low-insulin-high-glucose (LIHG) medium compared with those in normal medium, whereas contraction was unaffected. Intracellular Ca2+ transients showed slower rates of decay in myocytes cultured in LIHG medium. These data demonstrate that maintaining normal ventricular myocytes in an LIHG environment prolongs relaxation in a manner similar to the effects of in vivo diabetes. Furthermore, the abnormal relaxation is inducible in 1 day, suggesting rapid alterations in processes regulating relaxation, which likely include impaired Ca2+ sequestration and/or extrusion.


Sign in / Sign up

Export Citation Format

Share Document