Effects of cardiac contraction and cavity pressure on myocardial blood flow

1993 ◽  
Vol 265 (4) ◽  
pp. H1342-H1352 ◽  
Author(s):  
J. W. Doucette ◽  
M. Goto ◽  
A. E. Flynn ◽  
R. E. Austin ◽  
W. K. Husseini ◽  
...  

Regional impairment of cardiac contraction uncouples force generation from left ventricular pressure (LVP) and may alter the determinants of the phasic pattern and transmural distribution of coronary flow. In anesthetized, open-chest dogs with maximal coronary vasodilation, we studied the effects of abolishing local contraction and changing cavity pressure on phasic myocardial inflow and net transmural flow in a region of left ventricular free wall. With contraction present, the normalized amplitude of distal phasic coronary velocity (NAmp) was not significantly different at normal vs. low LVP (1.00 vs. 0.92 +/- 0.09, respectively, intracoronary lidocaine, however, NAmp varied with LVP (1.62 +/- 0.25 at normal LVP, 0.85 +/- 0.22 at low LVP, P < 0.0001). With contraction present, inner-to-outer flow ratio was not consistently different at normal vs. low LVP (0.47 +/- 0.15 vs. 0.64 +/- 0.28, respectively, P = NS) but was consistently higher at low than at normal LVP with contraction absent (1.01 +/- 0.30 vs. 1.84 +/- 0.38, respectively, P < 0.0001). During uniform global function, contraction is the main determinant of phasic amplitude and transmural distribution of myocardial flow. When regional contraction is abolished, allowing passive deformation of the wall during systole, LVP assumes a powerful role.

1998 ◽  
Vol 274 (1) ◽  
pp. H187-H192 ◽  
Author(s):  
Jurgen W. G. E. Vanteeffelen ◽  
Daphne Merkus ◽  
Luc J. Bos ◽  
Isabelle Vergroesen ◽  
Jos A. E. Spaan

In the present study, cardiac contraction was regionally impaired to investigate the relationship between contractility [maximum first time derivative of left ventricular pressure (dPLV/d tmax)] and PLVon epicardial lymph pressure (Plymph) generation. Measurements were performed in open-chest anesthetized dogs under control conditions and while local contraction was abolished by intracoronary administration of lidocaine. Lidocaine significantly lowered dPLV/d tmaxand PLVpulse to 77 ± 9 (SD; n = 5) and 82 ± 5% of control, respectively, whereas Plymphpulse increased to 186 ± 101%. The relative increase of maximum Plymphto PLVrelated inversely to the change in dPLV/d tmaxafter lidocaine administration. Additional data were obtained when PLVwas transiently increased by constriction of the descending aorta. The ratio of pulse Plymphto PLVduring aortic clamping increased after lidocaine administration, from 0.063 ± 0.03 to 0.15 ± 0.09. The results suggest that transmission of PLVto the cardiac lymphatic vasculature is enhanced when regional contraction is impaired. These findings imply that during normal, unimpaired contraction lymph vessels are shielded from high systolic PLVby the myocardium itself.


1991 ◽  
Vol 261 (5) ◽  
pp. H1417-H1429 ◽  
Author(s):  
M. Goto ◽  
A. E. Flynn ◽  
J. W. Doucette ◽  
C. M. Jansen ◽  
M. M. Stork ◽  
...  

To evaluate the roles of intramyocardial forces and systolic ventricular pressure in myocardial flow in the different layers separately, we measured myocardial flow in rabbit hearts during stable systolic contracture with left ventricular pressures of 60 (n = 5) and 0 mmHg (n = 5) and during stable diastolic arrest (n = 5). We also measured the number and size of the intramyocardial vessels after perfusion fixation (systolic arrest, n = 5; diastolic arrest, n = 5). In 25 rabbits, hearts were excised and perfused from the aortic root. Systolic arrest was achieved by perfusion of a low-Ca2+ Tyrode solution containing 2.0 mM Ba2+. Diastolic arrest was achieved by intraventricular injection of 700-1,000 mg pentobarbital sodium and was maintained by perfusion with St. Thomas cardioplegic solution. At perfusion pressure of 100 mmHg, subendocardial flow was lower than subepicardial flow during systolic arrest regardless of left ventricular pressure, whereas during diastolic arrest, subendocardial flow was higher than subepicardial flow. Subendocardial-to-subepicardial flow ratios for a physiological range of perfusion pressures were lower during systolic arrest with low rather than with high left ventricular pressure. Small arteriolar and capillary densities showed no difference between subendocardium and subepicardium. During systolic arrest, diameters of subendocardial terminal arterioles (4.6 +/- 1.3 microns) and capillaries (4.0 +/- 1.3 microns) were smaller than those in the subepicardium (8.8 +/- 1.7 and 7.1 +/- 1.6 microns, respectively; P less than 0.0001), whereas during diastolic arrest, diameters of subendocardial terminal arterioles (10.1 +/- 2.0 microns) and capillaries (7.6 +/- 1.8 microns) were slightly larger than those in the subepicardium (9.5 +/- 1.5 and 6.7 +/- 1.0 microns, respectively; P less than 0.01). We conclude that cardiac contraction predominantly affects subendocardial vessels and impedes subendocardial flow more than subepicardial flow regardless of left ventricular pressure.


1990 ◽  
Vol 258 (6) ◽  
pp. H1889-H1898 ◽  
Author(s):  
R. Krams ◽  
P. Sipkema ◽  
N. Westerhof

In this study on the isolated, maximally vasodilated, blood-perfused cat heart we investigated the relation between left ventricular developed pressure (delta Piv) and coronary oscillatory flow amplitude (diastolic minus systolic flow, delta F) at different levels of constant perfusion pressure (Pp). We hypothesized that the effect of cardiac contraction on the phasic flow results from the changing elastic properties of cardiac muscle. The coronary vessel compartment can, as can the left ventricular lumen compartment, be described by a time-varying elastance. This concept predicts that the effect of left ventricular pressure on delta F is small, whereas the effect of Pp is considerable. Both the waterfall model and the intramyocardial pump model predict the inverse. The relation between delta Piv and delta F at a Pp of 10 kPa is delta F = (4.71 +/- 3.08).delta Piv + 337 +/- 75 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 7); the relation between (constant levels of) Pp and delta F at a constant delta Piv of 10 kPa is delta F = 51.Pp + 211 (slope in ml.min-1.100 g-1.kPa-1 and intercept in ml.min-1.100 g-1; n = 6). The differences in slope are best predicted by the time-varying elastance concept.


1993 ◽  
Vol 264 (5) ◽  
pp. H1548-H1559 ◽  
Author(s):  
T. Delhaas ◽  
T. Arts ◽  
P. H. Bovendeerd ◽  
F. W. Prinzen ◽  
R. S. Reneman

In a mathematical model of the mechanics of the left ventricle (LV) by Arts et al. (1), assuming uniformity of fiber stress (sigma f) and fiber strain (delta epsilon f) in the wall during the ejection phase, fiber stress and fiber strain were related to LV cavity pressure (Plv), LV cavity volume (Vlv) and wall volume (Vw) by the following pair of equations: sigma f = Plv (1 + 3 Vlv/Vw) and delta epsilon f = 1/3 delta ln (1 + 3 Vlv/Vw). The ratio of Vlv to Vw appeared to be the most important geometric parameter, whereas the actual LV shape was of minor importance. The relationships on fiber strain and stress were evaluated experimentally in six anesthetized open-chest dogs during normal and elevated (volume loading) end-diastolic LV pressure. Subepicardial fiber strain was measured simultaneously in 16 adjacent regions of the LV anterior wall, using optical markers that were attached to the epicardial surface and recorded on video. Changes in Vlv were measured by use of four inductive coils sutured to the LV in a tetrahedric configuration. Vw was measured postmortem. During control as well as hypervolemia the following results were found. At the anterior free wall of the LV, the slope of the estimated linear relationship between measured and calculated fiber strain was 1.017 +/- 0.168 (means +/- SD), which is not significantly different from unity. Calculated fiber stress corresponded qualitatively and quantitatively with experimental results reported on isolated cardiac muscle. Calculated subepicardial contractile work per unit of tissue volume was not significantly different from global pump work as normalized to Vw. These findings support the assumption of homogeneity of muscle fiber strain and stress in the left ventricular wall during the ejection phase. Furthermore, average values of fiber stress and strain can be estimated on the basis of measured left ventricular pressure and volume.


2000 ◽  
Vol 279 (5) ◽  
pp. H2519-H2528 ◽  
Author(s):  
Rachad M. Shoucri

A mathematical approach that can be used to calculate the passive stress in the ventricular wall is presented. The active fiber stress (force/unit area) generated by the muscular fibers in the ventricular wall is expressed by means of body force (force/unit volume of the myocardium). It is shown that the total intramyocardial passive stress induced in the passive medium of the myocardium can be expressed as the sum of a passive stress induced by the left ventricular pressure and a passive stress induced by the active fiber stress. Applications to experimental data published in the literature are given. New results are presented that show the relation among those two components of the intramyocardial passive stress. New relations between the intramyocardial passive stress, the slope (elastance) of the pressure-volume relation, and the residual volume are also derived. The results obtained give a better understanding of some aspects of the mechanics of cardiac contraction and can provide a more detailed interpretation of clinical conditions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Poonavit Pichayapaiboon ◽  
Lalida Tantisuwat ◽  
Pakit Boonpala ◽  
Nakkawee Saengklub ◽  
Tussapon Boonyarattanasoonthorn ◽  
...  

Objectives: This study was designed to thoroughly evaluate the effects of bolus pimobendan at a dose of 0.15 mg/kg on cardiac functions, hemodynamics, and electrocardiographic parameters together with the pharmacokinetic profile of pimobendan and its active metabolite, o-desmethyl-pimobendan (ODMP), in anesthetized dogs.Methods: Nine beagle dogs were anesthetized and instrumented to obtain left ventricular pressures, aortic pressures, cardiac outputs, right atrial pressures, pulmonary arterial pressures, pulmonary capillary wedge pressures, electrocardiograms. After baseline data were collected, dogs were given a single bolus of pimobendan, and the pharmacodynamic parameters were obtained at 10, 20, 30, 60, and 120 min. Meanwhile, the venous blood was collected at baseline and 2, 5, 10, 20, 30, 60, 120, 180, 360, and 1,440 min after administration for the determination of pharmacokinetic parameters.Results: Compared with baseline measurements, the left ventricular inotropic indices significantly increased in response to intravenous pimobendan, as inferred from the maximum rate of rise in the left ventricular pressure and the contractility index. Conversely, the left ventricular lusitropic parameters significantly decreased, as inferred from the maximum rate of fall in the left ventricular pressure and the left ventricular relaxation time constant. Significant increases were also noted in cardiac output and systolic blood pressure. Decreases were observed in the systemic vascular resistance, pulmonary vascular resistance, left ventricular end-diastolic pressure, pulmonary capillary wedge pressure, right atrial pressure, and pulmonary arterial pressure. The heart rate increased, but the PQ interval decreased. There was no arrhythmia during the observed period (2 h). The mean maximum plasma concentration (in μg/L) for ODMP was 30.0 ± 8.8. Pimobendan exerted large volume of distribution ~9 L/kg.Conclusions: Intravenous pimobendan at the recommended dose for dogs increased cardiac contraction and cardiac output, accelerated cardiac relaxation but decreased both vascular resistances. These mechanisms support the use of injectable pimobendan in acute heart failure.


1993 ◽  
Vol 264 (3) ◽  
pp. H715-H721 ◽  
Author(s):  
P. Bouma ◽  
P. Sipkema ◽  
N. Westerhof

During cardiac contraction coronary arterial inflow is impeded, whereas venous flow is augmented. These effects are assumed to be caused by diameter reductions of intramyocardial blood vessels. The reduction in vascular diameter (and thus vascular volume) during contraction increases coronary resistance and/or decreases back pressure so that flow decreases and the rate of change of volume results in a capacitive flow. The aim of this study was to estimate the contribution of capacitive flow to total coronary inflow impediment. Isolated blood-perfused (100 mmHg and constant), maximally vasodilated, ryanodine-pretreated rat hearts (n = 8) with intraventricular balloons were used. The coronary inflow impediment during isovolumic beats at a heart rate of 2–3 Hz (dynamic contractions) and during prolonged systoles obtained by fast pacing (static contractions, no capacitive flow impediment) were compared. Changing left ventricular balloon volume enabled us to vary left ventricular pressure and to relate systolic flow to systolic left ventricular pressure. We found that for the same contractility (expressed in terms of systolic pressure-volume relationship and maximal elastance) and same left ventricular pressure, the ratio of coronary inflow impediment in dynamic and static contractions is not significantly different from unity (P < 0.005). This implies that under our experimental conditions coronary inflow impediment in dynamic contractions is little affected by capacitive effects.


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


Sign in / Sign up

Export Citation Format

Share Document