Metformin improves cardiac function in isolated streptozotocin-diabetic rat hearts

1994 ◽  
Vol 266 (2) ◽  
pp. H714-H719 ◽  
Author(s):  
S. Verma ◽  
J. H. McNeill

The effects of metformin administration were studied in isolated perfused working hearts from control and diabetic rats. Control and streptozotocin-treated diabetic rats were treated for 8 wk with metformin hydrochloride. Treatment was initiated at 350 mg.kg-1 x day-1 and was gradually increased to a dose of 650 mg.kg-1 x day-1, which was maintained over a 6-wk period. Isolated heart performance was assessed under conditions of increasing preload to evaluate the performance of each heart to “stress.” Hearts from untreated diabetic rats exhibited a depressed response to increases in left atrial filling pressures from 17.5 to 22.5 cmH2O in terms of left ventricular developed pressure, ventricular contractility, and ventricular relaxation compared with age-matched untreated controls. The diabetic hearts also exhibited a delayed half time to relaxation at filling pressures from 15 to 22.5 cmH2O. The function curves were performed at a constant heart rate of 300 beats/min. These responses were restored to control values in diabetic rats treated with metformin. Metformin treatment did not affect the ventricular responses in control rats. Metformin reduced plasma glucose levels in the diabetic rats from 24.3 to 14.4 mM without any increase in the plasma insulin levels. The diabetic group had higher triglycerides than age-matched untreated control rats, and metformin administration in diabetic rats reduced triglyceride levels to control values but had no effect in control rats. In conclusion, metformin administration improves cardiac performance in streptozotocin-diabetic rats under conditions of increasing preload.

1983 ◽  
Vol 61 (5) ◽  
pp. 516-523 ◽  
Author(s):  
Arun G. Tahiliani ◽  
Rao V. S. V. Vadlamudi ◽  
John H. McNeill

Isolated perfused hearts from diabetic rats exhibit a decreased responsiveness to increasing work loads. However, the precise time point at which functional alterations occur is not clearly established. Previous observations in our laboratory have suggested that the alterations in myocardial function are not apparent at 30 days whereas they are clearly seen 100 days after streptozotocin-induced diabetes. We studied the cardiac function of 6-week diabetic rats using the isolated perfused heart preparation. The 6-week time period was found to be sufficient to cause depression of myocardial function in these animals. We also studied the effect of insulin treatment on myocardial performance of diabetic rats. Insulin treatment was initiated 3 days and 6 weeks after injection of streptozotocin (STZ). The treatment was continued for 6 and 4 weeks in the respective groups. Hearts from 6-week diabetic animals exhibited a depressed left ventricular developed pressure (LVDP) and positive and negative dP/dt at higher filling pressures when compared with 6-week control animals. However, the depression was not seen in the 6-week insulin-treated diabetic animals. Ten-week diabetic rat hearts also showed a depression of LVDP and positive and negative dP/dt when compared with 10-week controls. The group of animals that had been diabetic for 6 weeks and then treated for 4 weeks with insulin exhibited a reversal of the depressed myocardial function. These results demonstrate that depression of myocardial performance, which is evident 6 weeks after diabetes is induced, can be prevented if insulin treatment is initiated as the disease is induced. Further, insulin treatment is capable of reversing the abnormalities after they have occurred.


1983 ◽  
Vol 245 (6) ◽  
pp. H969-H976 ◽  
Author(s):  
G. D. Lopaschuk ◽  
A. G. Tahiliani ◽  
R. V. Vadlamudi ◽  
S. Katz ◽  
J. H. McNeill

Cardiac sarcoplasmic reticulum (SR) function and SR levels of long-chain (LC) acylcarnitines were determined in streptozotocin-induced diabetic rats treated with insulin or D,L-carnitine. ATP-dependent calcium transport was significantly depressed in cardiac SR isolated from untreated diabetic rats compared with control rats. Diabetic rat cardiac SR levels of LC acylcarnitines were also significantly elevated. Various parameters of heart function (left ventricular developed pressure, +dP/dT, and -dP/dT), as determined on an isolated working heart apparatus, were found to be depressed in untreated diabetic rats. Cardiac SR isolated from diabetic rats treated throughout the study period with insulin or D,L-carnitine did not have elevated levels of LC acylcarnitines associated with SR membrane nor was SR calcium transport activity depressed. Heart function in the diabetic rats treated with insulin was similar to control rat hearts but heart function remained depressed in diabetic rats treated with D,L-carnitine. The data suggest that the LC acylcarnitines are involved in the observed impairment of cardiac SR function in diabetic rats. Other factors, however, must be contributing to the depression in heart function noted in these animals.


2000 ◽  
Vol 278 (6) ◽  
pp. H1874-H1882 ◽  
Author(s):  
Nandakumar Sambandam ◽  
Mohammed A. Abrahani ◽  
Scott Craig ◽  
Osama Al-Atar ◽  
Esther Jeon ◽  
...  

In streptozotocin (STZ)-induced diabetic rats, we previously showed an increased heparin-releasable (luminal) lipoprotein lipase (LPL) activity from perfused hearts. To study the effect of this enlarged LPL pool on triglyceride (TG)-rich lipoproteins, we examined the metabolism of very-low-density lipoprotein (VLDL) perfused through control and diabetic hearts. Diabetic rats had elevated TG levels compared with control. However, fasting for 16 h abolished this difference. When the plasma lipoprotein fraction of density <1.006 g/ml from fasted control and diabetic rats was incubated in vitro with purified bovine or rat LPL, VLDL from diabetic animals was hydrolyzed as proficiently as VLDL from control animals. Post-heparin plasma lipolytic activity was comparable in control and diabetic animals. However, perfusion of control and diabetic rats with heparinase indicated that diabetic hearts had larger amounts of LPL bound to heparan sulfate proteoglycan-binding sites. [3H]VLDL obtained from control rats, when recirculated through the isolated heart, disappeared at a significantly faster rate from diabetic than from control rat hearts. This increased VLDL-TG hydrolysis was essentially abolished by prior perfusion of the diabetic heart with heparin, implicating LPL in this process. These findings suggest that the enlarged LPL pool in the diabetic heart is present at a functionally relevant location (at the capillary lumen) and is capable of hydrolyzing VLDL. This could increase the delivery of free fatty acid to the heart, and the resultant metabolic changes could induce the subsequent cardiomyopathy that is observed in the chronic diabetic rat.


1982 ◽  
Vol 60 (7) ◽  
pp. 902-911 ◽  
Author(s):  
Rao V. S. V. Vadlamudi ◽  
Robert L. Rodgers ◽  
John H. McNeill

Cardiac disease is a common secondary complication appearing in chronic diabetics. Isolated perfused working hearts obtained from both acute and chronic diabetic rats have also been shown to exhibit cardiac functional abnormalities when exposed to high work loads. We studied cardiac performance at various time points after induction of diabetes in rats to determine exactly when functional alterations appeared and whether these alterations progressed with the disease state. Female Wistar rats were made diabetic by a single i.v. injection of either alloxan (65 mg/kg) or streptozotocin (STZ 60 mg/kg). Cardiac performance was assessed at 7, 30, 100, 180, 240, and 360 days after induction of diabetes using the isolated perfused working heart technique. No changes were observed in the positive and negative dP/dt development at various atrial filling pressures in the diabetic hearts 7 days after treatment. Alloxan diabetic rat hearts exhibited depressed left ventricular pressure and positive and negative dP/dt development when perfused at high atrial filling pressures, at 30. 100, and 240 days after treatment. STZ diabetic rat hearts exhibited depressed cardiac performance at high atrial filling pressures at 100, 180, and 360 days after treatment, but not at 30 days after treatment. Control hearts exhibited slight but significant depressions in cardiac function with age. These results suggest that cardiac functional alterations appear in diabetic rats about 30 days after induction and progress with the disease. These alterations may indicate the development of a cardiomyopathy.


1986 ◽  
Vol 251 (3) ◽  
pp. H670-H675
Author(s):  
S. Bhimji ◽  
D. V. Godin ◽  
J. H. McNeill

Reversal of myocardial biochemical changes with insulin treatment (4 and 8 wk) was studied in 8 and 12 wk streptozotocin (STZ)-diabetic rats. STZ-induced diabetes was characterized by elevations in blood glucose, serum cholesterol, and triglycerides and depressed serum insulin levels. Insulin treatment for 4 and 8 wk completely restored the serum alterations to control values. The polyuria, polydipsia, and polyphagia were also markedly diminished by the insulin treatment. Diabetic rats had pronounced decreases in body, heart, and left ventricular weights, all of which were completely reversed by the insulin treatment. Hydroxyproline accumulation in diabetic rat hearts was only reversed by the 8-wk and not by the 4-wk insulin treatment. STZ produced a significant depletion of left ventricular magnesium content as well as depression of K+-stimulated sarcoplasmic reticulum and myofibrillar ATPase activities. Both the 4- and 8-wk insulin treatment produced a complete recovery of the myocardial magnesium content. No significant changes in sarcolemmal Na+-K+-ATPase and K+-stimulated p-nitrophenyl phosphatase activities were observed in diabetic animals compared with control. The decreased latency of the lysosomal hydrolase, N-acetyl-beta-glucosaminidase, and the increased collagen deposition observed in the diabetic hearts were only partially reversed by the 4-wk insulin treatment, but completely reversed by the 8-wk treatment period.


1984 ◽  
Vol 62 (6) ◽  
pp. 617-621 ◽  
Author(s):  
Arun G. Tahiliani ◽  
John H. McNeill

Cardiac functional abnormalities are frequently seen in diabetics and diabetes is also known to produce a state of mild hypothyroidism. To study the degree of involvement of diabetes-induced hypothyroidism on altered myocardial function, thyroid replacement therapy was carried out in streptozotocin-diabetic rats. Triiodothyronine (T3) treatment was initiated 3 days after the rats were made diabetic and was carried out for 6 weeks thereafter. Isolated perfused hearts from diabetic rats exhibited a depression in left ventricular developed pressure and positive and negative dP/dt at higher filling pressures as compared with controls. The depression could not be prevented by thyroid treatment. Calcium uptake activity in the cardiac sarcoplasmic reticulum (SR) was also depressed as a result of diabetes and this depression also was not prevented by thyroid treatment. Long chain acyl carnitine levels were found to be elevated in diabetic cardiac SR and could not be lowered by T3 treatment. The results indicate that the myocardial dysfunction observed in diabetic rats is due to factors other than the induced hypothyroidism.


1985 ◽  
Vol 63 (8) ◽  
pp. 925-931 ◽  
Author(s):  
Arun G. Tahiliani ◽  
John H. McNeill

Diabetes results in myocardial functional alterations which are accompanied by a depression of biochemical parameters such as myosin ATPase and calcium uptake in the sarcoplasmic reticulum. Methyl palmoxirate, a fatty acid analog, is reported to decrease circulating glucose levels by inhibiting fatty acid metabolism, thus forcing carbohydrate utilization. In the present study, we attempted to prevent streptozotocin diabetes-induced myocardial alterations in the rat. Using the isolated working heart preparation, we observed a depression of myocardial function in rats 6 weeks after the induction of diabetes, which was characterized by the inability of these hearts to develop left ventricular pressures and rates of ventricular contraction and relaxation as well as control hearts at higher left atrial filling pressures. Methyl palmoxirate treatment (25 mg kg−1 day−1 po daily) was unable to control diabetes-induced changes in plasma glucose, triglycerides, insulin, and total lipids. Also, the functional depression seen in diabetic rat hearts was present despite the treatment. However, depression of calcium uptake and elevation of long chain acyl carnitines seen in sarcoplasmic reticulum (SR) prepared from diabetic rat hearts could be prevented by the treatment. As triiodothyronine (T3) treatment has been shown to normalize depression of cardiac myosin ATPase in diabetic rats, we repeated the study using a combination of T3 (30 μg kg−1 day−1 sc daily) and methyl palmoxirate. While diabetic rats treated with T3 alone did not show significant improvement of myocardial function when compared with untreated diabetics, the function of those treated with both T3 and methyl palmoxirate was not significantly different from that in control rat hearts. These results suggest that while the combination of T3 and methyl palmoxirate may have other effects which result in improved function, preventing the depression of myosin ATPase and the SR calcium uptake can account at least in part for the functional depression.


1993 ◽  
Vol 71 (12) ◽  
pp. 896-903 ◽  
Author(s):  
G. D. Lopaschuk ◽  
J. R. T. Lakey ◽  
R. Barr ◽  
R. Wambolt ◽  
A. B. R. Thomson ◽  
...  

In poorly controlled diabetes an impairment of glucose use can contribute to a depression in mechanical function of rat hearts. In this study we determined the effects of islet transplantation on glucose use and heart function in streptozotocin-induced diabetic rats. Myocardial function, glycolysis, and glucose oxidation were measured in isolated working hearts obtained from control, diabetic, and islet-transplanted diabetic Wistar–Furth rats. Islets (1200) were transplanted beneath the kidney capsule 2 weeks after a single i.v. dose of streptozotocin (55 mg/kg). The study consisted of three groups: (i) islet-transplanted diabetic rats, (ii) untreated diabetic controls, and (iii) normal controls. Following 11 weeks of monitoring, working hearts were perfused at a 11.5-mmHg (1 mmHg = 133.3 Pa) preload and 80-mmHg afterload, with buffer containing 11 mM [5-3H, 14C(U)]glucose, 1.2 mM palmitate, and 100 μU/mL insulin. In untreated diabetic rat hearts, glucose oxidation rates were markedly depressed compared with control hearts (30.4 ± 4 and 510 ± 68 nmol∙g−1 dry wt.∙min−1, respectively). Low glucose oxidation rates in diabetic rats were significantly improved in islet-transplanted animals (234 ± 39 nmol∙g−1 dry wt.∙min−1). The low glucose oxidation rates in untreated diabetic rat hearts were accompanied by an impaired mechanical function compared with control hearts, which was improved by islet transplantation (heart rate × developed pressure × 10−3 was 10.6 ± 0.9, 14.8 ± 1.3, and 14.8 ± 1.5 beats∙mmHg∙min−1, respectively). In the presence of insulin, steady-state rates of glycolysis were only slightly depressed in untreated diabetic rat hearts compared with control (1944 ± 436 and 2720 ± 265 nmol∙g−1 dry wt.∙min−1, respectively). However, during a reduction of coronary flow to 0.5 mL∙min−1, glycolytic rates accelerated in control and islet-transplanted rat hearts, but not in untreated diabetic rat hearts. These data show that the decrease in glucose use that occurs in untreated diabetic rats under both aerobic and ischemic conditions can be significantly alleviated by islet transplantation. The increase in glucose oxidation in aerobic hearts supports our previous studies, which suggest that increasing glucose oxidation can improve function in diabetic rat hearts.Key words: glucose oxidation, glycolysis, diabetes, islet transplantation.


2001 ◽  
Vol 280 (2) ◽  
pp. H802-H811 ◽  
Author(s):  
Brian P. Lipton ◽  
Abraham P. Bautista ◽  
Joseph B. Delcarpio ◽  
Kathleen H. McDonough

With the use of a syngeneic model, we demonstrate that rat polymorphonuclear neutrophils (PMNs) exacerbate ischemia-reperfusion injury in the isolated rat heart. However, PMNs (19 × 106cells) from lipopolysaccharide (LPS)-treated rats (LPS-PMNs; 100 mg/kg administered 7 h before exsanguination) induce less reperfusion injury in the isolated heart. Average recovery of left ventricular developed pressure after 20 min of ischemia and 60 min of reperfusion was 51 ± 4% in hearts receiving PMNs from saline-treated control rats (saline-PMNs) versus 78 ± 2% in hearts receiving LPS-PMNs. Ischemic hearts reperfused with LPS-PMNs recovered to the same extent as did hearts reperfused with Krebs buffer only. LPS-PMNs and saline-PMNs showed no difference in basal or phorbol ester-induced superoxide production. Whereas twice the number of LPS-PMNs was positive for nitroblue tetrazolium, the percent positive for L-selectin, a receptor integral in PMN-adhesion to endothelium, was 50% less in LPS-PMNs than in controls. After reperfusion, three-fourths of the saline-PMNs remained within the hearts, whereas only one-fourth of LPS-PMNs were trapped. These data suggest that PMNs from LPS-treated rats do not exacerbate ischemia-reperfusion injury as do control PMNs, possibly, due to impaired PMN adhesion to endothelium as a result of decreased L-selectin receptors.


2017 ◽  
Vol 95 (11) ◽  
pp. 1343-1350
Author(s):  
Aleksandra Vranic ◽  
Stefan Simovic ◽  
Petar Ristic ◽  
Tamara Nikolic ◽  
Isidora Stojic ◽  
...  

Currently, cardiovascular diseases are the leading cause of global mortality, while diabetes mellitus remains an important cause of cardiovascular morbidity. A recent study showed that patients with diabetes mellitus treated with mineralocorticoid receptor antagonists have improved coronary microvascular function, leading to improved diastolic dysfunction. In this study, we evaluated the influence of acute administration of spironolactone on myocardial function in rats with streptozotocin-induced diabetes mellitus, with special emphasis on cardiodynamic parameters in diabetic rat hearts. The present study was carried out on 40 adult male Wistar albino rats (8 weeks old). Rats were randomly divided into 4 groups (10 animals per group): healthy rats treated with 0.1 μmol/L of spironolactone, diabetic rats treated with 0.1 μmol/L of spironolactone, healthy rats treated with 3 μmol/L of spironolactone, and diabetic rats treated with 3 μmol/L of spironolactone. Different, dose-dependent, acute responses of spironolactone treatment on isolated, working diabetic and healthy rat heart were observed in our study. In healthy rats, better systolic function was achieved with higher spironolactone dose, while in diabetic rats, similar effects of low and high spironolactone dose were observed.


Sign in / Sign up

Export Citation Format

Share Document