Downward shift of coronary pressure-flow relationship following a brief period of ischemia in dogs

1995 ◽  
Vol 269 (4) ◽  
pp. H1237-H1245
Author(s):  
T. Morioka ◽  
M. Kitakaze ◽  
T. Minamino ◽  
S. Takashima ◽  
K. Node ◽  
...  

This study was undertaken to test whether a brief period of ischemia affects the coronary pressure-flow relationship during reduction of coronary perfusion pressure (CPP). The left anterior descending coronary artery was cannulated and perfused with blood from the left carotid artery in 40 open-chest dogs. Coronary blood flow (CBF) was measured during intracoronary administrations of papaverine and adenosine. The coronary pressure-flow relationship was assessed during transient reduction of CPP from 100 to 30 mmHg. Coronary hyperemic flow due to adenosine and papaverine was attenuated 30 min after transient 10- and 15-min periods of ischemia. In the group of transient 10-min ischemia, both fractional shortening (FS) and CBF returned to the preischemic values at 30 and 60 min of reperfusion; however, marked decreases in CBF (35 +/- 5 vs. 56 +/- 4 ml.100 g-1.min-1 at CPP = 60 mmHg, P < 0.01) during graded reductions in CPP were observed. The endomyocardial blood flow was reduced relative to the control condition. Furthermore, both FS (6 +/- 1 vs. 14 +/- 1% at CPP = 60 mmHg, P < 0.01) and lactate extraction ratio (-41 +/- 15 vs. 1 +/- 6% at CPP = 60 mmHg, P < 0.05) were decreased. The downward shift of the CPP-CBF relationship and the deterioration of myocardial contractile and metabolic function during reduction of CPP were restored 60 min after the onset of reperfusion.(ABSTRACT TRUNCATED AT 250 WORDS)

1994 ◽  
Vol 266 (6) ◽  
pp. H2359-H2368 ◽  
Author(s):  
X. J. Bai ◽  
T. Iwamoto ◽  
A. G. Williams ◽  
W. L. Fan ◽  
H. F. Downey

Pressure-flow autoregulation minimizes changes in coronary blood flow (CBF) when coronary perfusion pressure (CPP) is altered. This investigation determined if autoregulation also minimizes CPP-induced changes in coronary vascular volume (CVV) and CVV-dependent changes in myocardial oxygen consumption (MVO2). In 11 anesthetized dogs, the left anterior descending coronary artery was cannulated, and responses to 20-mmHg changes in CPP were examined over a range of CPP from 60 to 180 mmHg. Changes in CPP had no significant effect on systemic hemodynamics or on left ventricular end-diastolic segment length, end-systolic segment length, or percent segment shortening. In hearts with effective pressure-flow autoregulation [closed-loop gain (GC) > 0.4], CVV increased 0.06%/mmHg change in CPP. For the same hearts, MVO2 increased 0.04%/mmHg change in CPP. In hearts with ineffective autoregulation (GC < 0.4), CVV increased 0.97%/mmHg (P < 0.001 vs. autoregulating hearts), and MVO2 increased 0.41%/mmHg (P < 0.001 vs. autoregulating hearts). MVO2 and CVV were correlated (r = 0.69, P < 0.0001) independently of autoregulatory capability, but only when autoregulation was poor and capacitance was elevated did CPP significantly affect MVO2. We conclude that pressure-flow autoregulation protects myocardium from CPP-induced changes in CVV, which in turn produces changes in oxygen consumption.


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Norman A Paradis ◽  
Karen L Moodie ◽  
Christopher L Kaufman ◽  
Joshua W Lampe

Introduction: Guidelines for treatment of cardiac arrest recommend minimizing interruptions in chest compressions based on research indicating that interruptions compromise coronary perfusion pressure (CPP) and blood flow and reducing the likelihood of successful defibrillation. We investigated the dynamics of CPP before, during, and after compression interruptions and how they change over time. Methods: CPR was performed on domestic swine (~30 Kg) using standard physiological monitoring. Blood flow was measured in the abdominal aorta (AAo), the inferior vena cava, the right common carotid and external jugular. Ventricular fibrillation (VF) was electrically induced. Mechanical chest compressions (CC) were started after four minutes of VF. CC were delivered at a rate of 100 compressions per minute (cpm) and at a depth of 2” for a total of 12 min. CPP was calculated as the difference between aortic and right atrial pressure at end-diastole per Utstein guidelines. CPP was determined for 5 compressions prior to the interruption, every 2 seconds during the CC interruption, and for 7 compressions after the interruption. Per protocol, 12 interruptions occurred at randomized time points. Results: Across 12 minutes of CPR, averaged CPP prior to interruption was significantly greater than the averaged CPP after the interruption (22.4±1.0 vs. 15.5±0.73 mmHg). As CPR continued throughout the 12 minutes, CPP during compressions decreased (First 6 min = 24.1±1.4 vs. Last 6 min = 20.1±1.3 mmHg, p=0.05), but the effect of interruptions remained constant resulting in a 20% drop in CPP for every 2 seconds irrespective of the prior CPP. The increase (slope) of CPP after resumption of compressions was significantly reduced over time (First 6 min = 1.47±0.18 vs. Last 6 min = 0.82±0.13 mmHg/compression). Conclusions: Chest compression interruptions have a detrimental effect on coronary perfusion and blood flow. The magnitude of this effect increases over time as a resuscitation effort continues. These data confirm the importance of providing uninterrupted CPR particularly in long duration resuscitations.


1998 ◽  
Vol 275 (5) ◽  
pp. H1520-H1523 ◽  
Author(s):  
Miao-Xiang He ◽  
H. Fred Downey

The mechanism responsible for the abrupt fall in myocardial contractile function following coronary artery obstruction is unknown. The “vascular collapse theory” hypothesizes that the fall in coronary perfusion pressure after coronary artery obstruction is responsible for contractile failure during early ischemia. To test the role of vascular collapse in downregulating myocardial contractile force at the onset of ischemia, coronary flow of isolated rat hearts was abruptly decreased by 50, 70, 85, and 100% of baseline, and subsequent changes in coronary perfusion pressure and ventricular function were recorded at 0.5-s intervals. At 1.5 s after flow reductions ranging from 50 to 100%, decreases in contractile function did not differ, although perfusion pressure varied significantly from 45 ± 1 to 20 ± 2 mmHg. When function fell to 50% of baseline, perfusion pressures ranged from 35 ± 0.5 to 2.5 ± 1 mmHg for flow reductions ranging from 50 to 100%. Identical contractile function at widely differing coronary perfusion pressures is incompatible with the vascular collapse theory.


1989 ◽  
Vol 257 (1) ◽  
pp. H132-H140 ◽  
Author(s):  
M. Hori ◽  
M. Kitakaze ◽  
J. Tamai ◽  
K. Iwakura ◽  
A. Kitabatake ◽  
...  

To determine whether alpha 2-adrenoceptor stimulation can augment adenosine-induced coronary vasodilation, 34 open-chest dogs were studied. When a small dose of clonidine (up to 0.24 micrograms.kg-1.min-1 ic) was administered under beta-adrenoceptor blockade, coronary blood flow [312 +/- 16 (SE) ml.100 g-1.min-1] maximally induced by intracoronary infusion of adenosine was further increased (P less than 0.05) by 66 +/- 16 ml.100 g-1.min-1, despite no significant changes in coronary perfusion pressure, myocardial oxygen consumption, and coronary venous adenosine concentration. However, when a larger dose of clonidine (0.36–0.60 micrograms.kg-1.min-1) was infused, adenosine-induced flow progressively decreased. This biphasic action of the alpha 2-adrenoceptor activity was also observed when the dose of norepinephrine was increased during alpha 1-adrenoceptor blockade with prazosin. Norepinephrine up to 0.24 micrograms.kg-1.min-1 (ic) further increased adenosine-induced coronary blood flow by 24 +/- 5% (P less than 0.001), whereas hyperemic flow was decreased by a larger dose of norepinephrine. In contrast to the alpha 2-adrenoceptor stimulation, the alpha 1-adrenoceptor stimulation (norepinephrine with yohimbine) progressively decreased coronary blood flow. Furthermore, with a small dose of clonidine, reactive hyperemic flow significantly increased compared with that without clonidine (303 +/- 13 vs. 355 +/- 13 ml.100 g-1.min-1, P less than 0.001), but a larger dose of clonidine adversely reduced reactive flow (254 +/- 18 ml.100 g-1.min-1, P less than 0.001). Adenosine release during reactive hyperemia with and without intracoronary infusions of clonidine were not altered significantly.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (6) ◽  
pp. H1739-H1744 ◽  
Author(s):  
K. W. Scheel ◽  
S. E. Williams ◽  
J. B. Parker

In previous work from this laboratory we demonstrated that the coronary pressure-flow relationship exhibits a zero pressure intercept in the absence of the influence of the collateral circulation. In the present study we determined the effect of varying coronary sinus pressures on coronary perfusion. Specifically, we investigated whether coronary flow would cease when the coronary inflow pressure equaled the coronary sinus pressure. The study was performed while inflow perfusion pressure to all coronary vessels was changed simultaneously in order to reduce the influence of the collateral circulation while coronary sinus outflow was measured. Coronary pressure-flow relationships were obtained for coronary sinus pressures of 0, 10, and 20 mmHg. The results demonstrate a strong correlation between perfusion pressure and coronary sinus pressure (r2 = 0.994 +/- 0.001), which passed through the origin. We conclude that coronary sinus pressures between 0 and 20 mmHg have a direct influence on coronary perfusion.


Sign in / Sign up

Export Citation Format

Share Document