Myogenic contribution to agonist-induced renal vasoconstriction during normoxia and hypoxia

1997 ◽  
Vol 272 (4) ◽  
pp. H1945-H1951 ◽  
Author(s):  
M. R. Eichinger ◽  
J. M. Resta ◽  
B. R. Walker

Acute hypoxia attenuates agonist-induced constrictor and pressor responses in conscious rats, and a recent report suggests that hypoxia may also diminish myogenic reactivity in isolated, perfused rat kidneys. Thus we hypothesized that the diminished responsiveness to pressor agents during hypoxia is caused by an impairment of myogenic reactivity. Male Sprague-Dawley rats were instrumented with a pulsed Doppler flow probe on the left renal artery, an aortic vascular occluder cuff immediately above the left renal artery to control renal perfusion pressure, and catheters were inserted to measure systemic arterial blood pressure and renal arterial pressure (RAP) and for administration of agents. Animals were studied under normoxic or acute hypoxic (fractional concentration of O2 in inspired gials = 0.12) conditions and were administered phenylephrine, arginine vasopressin, or angiotensin II. To determine the myogenic (pressure-dependent) component of agonist-induced vasoconstriction, renal vascular resistance was calculated during agonist infusion with RAP uncontrolled and with RAP controlled to preinfusion levels. Significant myogenic components of agonist-induced renal vasoconstriction were evident with all pressor agents used. However, hypoxia did not attenuate agonist-induced, pressure-dependent increases in renal vascular resistance. We conclude that the reduced vasoreactivity associated with acute hypoxia is not caused by diminished myogenic reactivity.

1999 ◽  
Vol 87 (4) ◽  
pp. 1296-1300 ◽  
Author(s):  
Alp Sener ◽  
Francine G. Smith

To test the hypothesis that acetylcholine-induced relaxation of the renal artery decreases with postnatal age, we measured parameters of renal hemodynamics before and for 35 s after aortic suprarenal injection of acetylcholine in conscious, chronically instrumented lambs aged ∼1 wk ( n = 5) and ∼6 wk ( n = 5). Acetylcholine was administered in one of five doses ranging from 0 to 10 mg/kg body wt; doses were administered randomly, in the same volume. There were significant age- and dose-dependent changes in renal vascular resistance after acetylcholine administration, such that the response was greater in 1-wk-old lambs. After the highest dose tested, renal vascular resistance decreased by 13.6 ± 7.3 (SD) mmHg ⋅ ml−1 ⋅ min ⋅ g kidney wt in 1-wk-old lambs and by 9.1 ± 3.2 mmHg ⋅ ml−1 ⋅ min ⋅ g kidney wt in 6-wk-old lambs at 35 s. We also observed a transient renal vasoconstriction before the renal vasodilatation in 6-wk-old lambs but not in 1-wk-old animals. These data provide the first age- and dose-dependent effects of exogenous administration of acetylcholine on renal hemodynamics during maturation in conscious animals.


1994 ◽  
Vol 72 (6) ◽  
pp. 632-636 ◽  
Author(s):  
Al-Hassan Badahman ◽  
Thomas W. Wilson

Angiotensin II (AII) stimulates arachidonate release from renal endothelial and other ceils. Arachidonate is then metabolized by cyclooxygenase to prostaglandin (PG) H2, then PGI2 and thromboxane A2 (TXA2). PGH2 and TXA2 activate the same receptor and should augment AII-mediated vasoconstriction, whereas PGI2 is a vasodilator. We had previously shown that inhibiting TXA2 synthesis with furegrelate (FRG) redirects PGH2 metabolism toward PGI2, causing renal vasodilation. Because TXA2 synthesis inhibition may be incomplete and unmetabolized PGH2 may cause vasoconstriction, we reasoned that adding a PGH2/TXA2 receptor antagonist (BMS 180,290, formerly SQ 29548 (SQ)) to furegrelate should cause further renal vasodilation in the presence of AII Eight groups of 10 Sprague–Dawley rats received 120-min intravenous infusions of vehicle, FRG (2 mg∙kg−1 plus 2 mg∙kg−1∙h−1), SQ (2 mg∙kg−1 plus 2 mg∙kg−1∙h−1), FRG plus SQ, AII (10 ng∙kg−1∙min−1), AII plus FRG, AII plus SQ, or AII plus FRG plus SQ. Mean arterial pressure (MAP), p-[14C]aminohippurate clearance (CPAH), and [3H]insulin clearance were averaged for each rat for the final 90 min in three clearance periods. MAP did not change with any treatment. Estimating renal vascular resistance as MAP/CPAH confirmed a renal vasoconstrictor effect of this dose of AII: 58.1 ± 6.3 vs. 47.3 ± 6.8 (arbitrary units) with the vehicle (p < 0.05). FRG, SQ, or their combination did not affect renal vascular resistance, but adding FRG or SQ to AII prevented AII-mediated renal vasoconstriction. Adding both to AII caused net renal vasodilation to 24.8 ± 2.6 (p < 0.05 vs. vehicle). Inulin clearance changed in the same direction in all groups, but the changes were less marked. We conclude that stimulation of renal arachidonate release by AII combined with TXA2 synthesis inhibition and receptor antagonism results in vasodilation. This renal effect could be due to increased and unopposed renal vasodilator PG (principally PGI2) action.Key words: renal hemodynamics, angiotensin II, prostaglandins, thromboxane.


1989 ◽  
Vol 256 (3) ◽  
pp. F456-F461 ◽  
Author(s):  
Y. Yagil ◽  
M. Miyamoto ◽  
R. L. Jamison

To study the effect of renal ischemia on the circulation in the inner medulla, blood flow in descending and ascending vasa recta was determined by fluorescence videomicroscopy in the exposed papilla of the uninephrectomized rat after clamping of the renal artery for 45 min. Total renal blood flow was determined in parallel studies with an electromagnetic flowmeter. Animals were studied 90 min (group 1E) and 24 h (group 2E) after right nephrectomy and release of the left renal artery clamp. Control rats were studied 90 min (group 1C) and 24 h (group 2C) after right nephrectomy alone. In groups 1E and 2E, total renal blood flow was reduced to 70 and 80% of that in their respective controls; renal vascular resistance increased by 50 and 73%, respectively. In striking contrast, blood flow was markedly elevated in descending and ascending vasa recta in groups 1E and 2E compared with the values in their respective uninephrectomized controls. These results indicate that the circulation in the inner medulla is rapidly restored after 45 min of total renal ischemia and that vasa recta blood flow rises above normal after 90 min and 24 h, despite a reduction in total renal blood flow and an increase in renal vascular resistance.


1981 ◽  
Vol 241 (2) ◽  
pp. H145-H148
Author(s):  
B. G. Zimmerman ◽  
C. Mommsen

Sequential changes in systemic arterial blood pressure (BP), renal blood flow (RBF) in the contralateral kidney, and plasma renin activity (PRA) were examined on conscious dogs with construction of a single renal artery (RAC). An increase of 24 mmHg in bP occurred within 2 days after RAC, and BP later plateaued at a lower level. RBF in the contralateral kidney transiently increased by 24% and then returned to the control level in 11-14 days. PRA also peaked early after RAC and then returned to control. The clamp was tightened and the renal artery was occluded (RAO) 3-20 days after RAC. BP, RBF, and PRA increased to an even greater degree than after RAC. BP peaked at 145 mmHg, and RBF increased 61.5% at 2-3 days after RAO. BP and RBF both decreased but remained above the control for the duration of the study, BP at 127 mmHg and RBF at 256 ml/min. RBF per gram for the hypertrophied contralateral kidney was calculated from the RBF before death and the weight at death. The final RBF per gram of the contralateral kidney (2.7 ml.min-1.g-1) decreased and renal vascular resistance increased compared with the estimated control RBF/g (3.7 ml.min-1.g-1) and renal vascular resistance. These results suggest that the final RBF of the contralateral kidney is not increased in proportion to its increase in weight and that it may be relatively hypoperfused in two-kidney one-clip Goldblatt hypertension.


1996 ◽  
Vol 270 (6) ◽  
pp. R1203-R1207
Author(s):  
E. Brand-Schieber ◽  
M. Pucci ◽  
A. Nasjletti

The effects of NG-nitro-L-arginine (L-NNA, 10 mg/kg i.v.) on renal hemodynamics were examined in control rats, rats in which renal perfusion pressure was prevented from rising after L-NNA by constricting the abdominal aorta, and rats in which tubuloglomerular feedback was inhibited by furosemide pretreatment, ureteral ligation, or both interventions combined. In control rats, L-NNA increased (P < 0.05) renal vascular resistance (274 +/- 27%) along with systemic arterial (54 +/- 4%) and renal perfusion (54 +/- 5%) pressures and decreased (P < 0.05) renal blood flow (57 +/- 4%). In rats in which renal perfusion pressure was prevented from increasing along with systemic arterial pressure (54 +/- 4%), the L-NNA-induced elevation of renal vascular resistance (173 +/- 27%) was less intense (P < 0.05). In another study, where renal perfusion pressure was fixed at pre-L-NNA levels, L-NNA-induced increases in renal vascular resistance (130 +/- 20%) were attenuated (P < 0.05) further with furosemide pretreatment (52 +/- 12%), with ureteral ligation (75 +/- 10%), and with furosemide pretreatment and ureteral ligation combined (32 +/- 8%). These data suggest that vasoconstrictor mechanisms linked to tubuloglomerular feedback and perfusion pressure elevation contribute to renal vasoconstriction after systemic inhibition of nitric oxide synthesis with L-NNA.


1997 ◽  
Vol 272 (6) ◽  
pp. R1747-R1753 ◽  
Author(s):  
C. Hill ◽  
A. M. Lateef ◽  
K. Engels ◽  
L. Samsell ◽  
C. Baylis

To investigate the activity of nitric oxide (NO) in control of renal hemodynamics during aging, studies were conducted on conscious Sprague-Dawley rats aged 3-5 mo (young, Y) and 18-22 mo (old, O). Blood pressure (BP) and renal vascular resistance (RVR) were higher in O vs. Y in control, and acute systemic NO synthesis inhibition (NOSI) increased BP and RVR, with an enhanced renal vasoconstrictor response in O. Infusion of the NO substrate L-arginine produced similar, selective renal vasodilation in both groups. The endothelium-dependent vasodilator acetylcholine caused similar falls in BP and RVR, whereas sodium nitroprusside produced an exaggerated depressor response in O vs. Y without falls in RVR in either age group. Urinary excretion of the stable NO oxidation products (NOx) decreased with age, suggesting a decline in the overall somatic NO production. In conclusion, basal tonically produced NO has a more pronounced role in maintenance of renal perfusion in aging, whereas L-arginine- and agonist-stimulated renal vasodilation is not impaired with age. NO production from some source may be reduced with aging, as indicated by falls in 24-h NOX excretion, although the similarity in pressor response and enhanced renal vasoconstrictor response to NOSI suggests that the role of NO in control of total peripheral and renal vascular resistance is maintained.


1984 ◽  
Vol 246 (4) ◽  
pp. F387-F394
Author(s):  
K. Inokuchi ◽  
K. U. Malik

We studied the contribution of prostaglandins to the actions of bradykinin at the renal vascular adrenergic neuroeffector junction by examining the effect of the peptide on the decrease in renal blood flow elicited by renal nerve stimulation and injected norepinephrine in pentobarbital-anesthetized rats with or without pretreatment with the cyclooxygenase inhibitors sodium meclofenamate or indomethacin. Infusion of bradykinin, 10 ng X kg-1 X min-1, into the renal artery reduced both the basal and the rise in renal vascular resistance produced by nerve stimulation or norepinephrine. The prostaglandin precursor arachidonic acid, 5 micrograms X kg-1 X min-1, infused into the renal artery, also reduced renal vascular resistance and the vasoconstrictor response elicited by either adrenergic stimulus. In animals pretreated with either sodium meclofenamate or indomethacin, the effect of arachidonic acid, but not that of bradykinin, to produce renal vasodilation and to attenuate adrenergically induced renal vasoconstriction was abolished. These data suggest that bradykinin produces renal vasodilation and inhibits the renal vasoconstrictor effect of adrenergic stimuli in the rat kidney in vivo by a mechanism unrelated to prostaglandin synthesis.


1962 ◽  
Vol 17 (1) ◽  
pp. 83-86 ◽  
Author(s):  
James F. Nickel ◽  
John A. Gagnon ◽  
Leonard Levine

Eight anesthetized dogs, given Clostridium perfringens type A toxic filtrate into the hind-limb muscles, showed severe spreading edema, hemoconcentration, marked reduction in para-aminohippurate (PAH) and creatinine clearances, and a rise in the renal vascular resistance. In the first 4 hr sodium excretion fell sharply, and mean arterial blood pressure, slightly. In eight similar dogs venous-occlusive pneumatic tourniquets were applied high on both hind limbs for 90 min. Edema was localized and minimal. Hematocrit was unchanged. PAH and creatinine clearances were extremely low in the second 30-min period of the occlusion but had risen somewhat in the last 30-min period. Sodium excretion was greatly reduced. Arterial pressure and vascular resistance rose very significantly. Upon removal of the tourniquets, PAH and creatinine clearances, blood pressure, and renal vascular resistance returned toward normal. Sodium excretion continued to fall. In many respects the renal changes resulting from two different forms of peripheral trauma are similar. Submitted on August 14, 1959


1987 ◽  
Vol 253 (2) ◽  
pp. F234-F238
Author(s):  
A. A. Seymour ◽  
S. G. Smith ◽  
E. K. Mazack

Synthetic atrial natriuretic factor (ANF 101-126) was infused at 1, 5, 25, and 125 pmol X kg-1 X min-1 into the renal artery of anesthetized, one-kidney dogs. During administration of 25 and 125 pmol X kg-1 X min-1 of ANF 101-126, fractional sodium excretion (FENa) rose from 1.4 +/- 0.3 to 6.6 +/- 1.1 and 5.6 +/- 1.3% when renal perfusion pressure (RPP) was at its basal level (112 +/- 5 mmHg). When base-line RPP was lowered to 101 +/- 5 mmHg by tightening a suprarenal aortic constriction, the same doses raised FENa to only 5.6 +/- 1.6 and 5.1 +/- 1.6%. A larger reduction of beginning RPP to 82 +/- 4 mmHg suppressed the natriuretic responses to 25 and 125 pmol X kg-1 X min-1 of ANF 101-126 to only 1.4 +/- 0.8 and 0.8 +/- 0.3%, respectively.During the peak natriuretic dose of 25 pmol X kg-1 X min-1, renal vascular resistance (RVR) fell from 0.88 +/- 0.10 to 0.68 +/- 0.07, from 0.78 +/- 0.10 to 0.68 +/- 0.12, and from 0.60 +/- 0.06 to 0.61 +/- 0.06 mmHg X ml-1 X min-1 at RPP = RPP = 112, 101, and 82 mmHg, respectively. ANF 101-126 did not affect glomerular filtration rate (GFR) at any level of RPP tested. In conclusion, the natriuretic responses to ANF 101-126 occurred without changes in GFR and were modulated by the prevailing levels of renal perfusion pressure and renal vascular resistance.


Sign in / Sign up

Export Citation Format

Share Document