Inner medullary blood flow in postischemic acute renal failure in the rat

1989 ◽  
Vol 256 (3) ◽  
pp. F456-F461 ◽  
Author(s):  
Y. Yagil ◽  
M. Miyamoto ◽  
R. L. Jamison

To study the effect of renal ischemia on the circulation in the inner medulla, blood flow in descending and ascending vasa recta was determined by fluorescence videomicroscopy in the exposed papilla of the uninephrectomized rat after clamping of the renal artery for 45 min. Total renal blood flow was determined in parallel studies with an electromagnetic flowmeter. Animals were studied 90 min (group 1E) and 24 h (group 2E) after right nephrectomy and release of the left renal artery clamp. Control rats were studied 90 min (group 1C) and 24 h (group 2C) after right nephrectomy alone. In groups 1E and 2E, total renal blood flow was reduced to 70 and 80% of that in their respective controls; renal vascular resistance increased by 50 and 73%, respectively. In striking contrast, blood flow was markedly elevated in descending and ascending vasa recta in groups 1E and 2E compared with the values in their respective uninephrectomized controls. These results indicate that the circulation in the inner medulla is rapidly restored after 45 min of total renal ischemia and that vasa recta blood flow rises above normal after 90 min and 24 h, despite a reduction in total renal blood flow and an increase in renal vascular resistance.

1983 ◽  
Vol 65 (6) ◽  
pp. 605-610 ◽  
Author(s):  
R. Hansson ◽  
O. Jonsson ◽  
S. Lundstam ◽  
S. Pettersson ◽  
T. Scherstén ◽  
...  

1. The intrarenal erythrocyte distribution, total renal blood flow and renal vascular resistance were studied before and during recirculation after 60 min of warm ischaemia in three groups of rabbits. One group was pretreated with superoxide dismutase, another with catalase and the third group was not pretreated at all. 2. In non-pretreated ischaemic kidneys there was a significant trapping of labelled erythrocytes in the outer stripe of the medulla. This trapping was not seen in non-ischaemic control kidneys and was completely prevented by pretreatment with either superoxide dismutase or catalase. 3. In non-pretreated ischaemic kidneys there was a transient increase in total renal blood flow during the first 5 min of recirculation, after which it returned to preischaemic values. After pretreatment with catalase the postischaemic increase in blood flow was more pronounced but again the blood flow returned to preischaemic values within 30 min. Pretreatment with superoxide dismutase resulted in a rapid postischaemic increase in blood flow which remained high throughout the 30 min period studied. 4. The renal vascular resistance decreased initially during recirculation after ischaemia in both pretreated and non-pretreated kidneys. In the latter it returned to pre-ischaemic values within 10 min whereas a slower increase was observed after catalase pretreatment. After pretreatment with superoxide dismutase the resistance remained low during the 30 min recorded.


1981 ◽  
Vol 241 (2) ◽  
pp. H145-H148
Author(s):  
B. G. Zimmerman ◽  
C. Mommsen

Sequential changes in systemic arterial blood pressure (BP), renal blood flow (RBF) in the contralateral kidney, and plasma renin activity (PRA) were examined on conscious dogs with construction of a single renal artery (RAC). An increase of 24 mmHg in bP occurred within 2 days after RAC, and BP later plateaued at a lower level. RBF in the contralateral kidney transiently increased by 24% and then returned to the control level in 11-14 days. PRA also peaked early after RAC and then returned to control. The clamp was tightened and the renal artery was occluded (RAO) 3-20 days after RAC. BP, RBF, and PRA increased to an even greater degree than after RAC. BP peaked at 145 mmHg, and RBF increased 61.5% at 2-3 days after RAO. BP and RBF both decreased but remained above the control for the duration of the study, BP at 127 mmHg and RBF at 256 ml/min. RBF per gram for the hypertrophied contralateral kidney was calculated from the RBF before death and the weight at death. The final RBF per gram of the contralateral kidney (2.7 ml.min-1.g-1) decreased and renal vascular resistance increased compared with the estimated control RBF/g (3.7 ml.min-1.g-1) and renal vascular resistance. These results suggest that the final RBF of the contralateral kidney is not increased in proportion to its increase in weight and that it may be relatively hypoperfused in two-kidney one-clip Goldblatt hypertension.


1985 ◽  
Vol 249 (5) ◽  
pp. F680-F687 ◽  
Author(s):  
H. Morita ◽  
S. F. Vatner

Effects of acute volume expansion with isotonic isoncotic 3% dextran in saline were examined on renal nerve activity (RNA), renal blood flow, vascular resistance, and sodium and water excretion in conscious dogs. In intact dogs, acute volume expansion increased mean arterial pressure 15 +/- 3 mmHg, left atrial pressure 5.5 +/- 0.6 mmHg, and decreased RNA 88 +/- 2%, whereas renal blood flow did not change and renal vascular resistance increased slightly. When renal perfusion pressure was maintained at control levels, volume expansion decreased RNA 87 +/- 2% and renal vascular resistance 15 +/- 4%. During the 80-min period after volume expansion, urine flow rate increased 0.66 +/- 0.13 ml/min and sodium excretion rose 3.89 +/- 0.54 mueq X min-1 X kg-1, whereas RNA remained depressed. Arterial baroreceptor denervation (ABD) did not diminish responses of RNA, renal blood flow, renal vascular resistance, or sodium and water excretion to volume expansion. After ABD plus bilateral cervical vagotomy, volume expansion did not decrease RNA, and diuretic and natriuretic responses were significantly attenuated (P less than 0.025). However, responses of renal blood flow to volume expansion were not altered significantly. In conscious dogs with renal denervation, responses of renal blood flow to volume expansion were not impaired, whereas diuretic and natriuretic responses were attenuated (P less than 0.025). Thus, in intact conscious dogs, vagally mediated reflex decreases in RNA induced by acute volume expansion exerted a significant effect on sodium and water excretion but little control of renal blood flow and renal vascular resistance.


1986 ◽  
Vol 251 (5) ◽  
pp. H897-H902
Author(s):  
D. Neisius ◽  
J. M. Wood ◽  
K. G. Hofbauer

The relative importance of angiotensin II for the renal vasodilatory response after converting-enzyme inhibition was evaluated by a comparison of the effects of converting-enzyme and renin inhibition on renal vascular resistance. Renal, mesenteric, and hindquarter blood flows were measured with chronically implanted ultrasonic-pulsed Doppler flow probes in conscious, mildly volume-depleted marmosets after administration of a converting-enzyme inhibitor (enalaprilat, 2 mg/kg iv), a synthetic renin inhibitor (CGP 29,287, 1 mg/kg iv), or a renin-inhibitory monoclonal antibody (R-3-36-16, 0.1 mg/kg iv). Enalaprilat reduced blood pressure (-16 +/- 4 mmHg, n = 6) and induced a selective increase in renal blood flow (27 +/- 8%, n = 6). CGP 29,287 and R-3-36-16 induced comparable reductions in blood pressure (-16 +/- 4 mmHg, n = 6 and -20 +/- 4 mmHg, n = 5, respectively) and selective increases in renal blood flow (36 +/- 12%, n = 6 and 34 +/- 16%, n = 4, respectively). The decrease in renal vascular resistance was of similar magnitude for all of the inhibitors (enalaprilat -28 +/- 3%, CGP 29,287 -32 +/- 6%; and R-3-36-16 -33 +/- 7%). These results indicate that the renal vasodilatation induced after converting-enzyme or renin inhibition is mainly due to decreased formation of angiotensin II.


2018 ◽  
Vol 315 (2) ◽  
pp. F241-F246
Author(s):  
Sofia Jönsson ◽  
Jacqueline M. Melville ◽  
Mediha Becirovic-Agic ◽  
Michael Hultström

Renin-angiotensin-system blockers are thought to increase the risk of acute kidney injury after surgery and hemorrhage. We found that losartan does not cause renal cortical hypoxia after hemorrhage in rats because of decreased renal vascular resistance, but we did not evaluate resuscitation. We aimed to study losartan’s effect on renal cortical and medullary oxygenation, as well as norepinephrine’s vasopressor effect in a model of resuscitated hemorrhage. After 7 days of losartan (60 mg·kg−1·day−1) or control treatment, male Wistar rats were hemorrhaged 20% of their blood volume and resuscitated with Ringerʼs acetate. Mean arterial pressure, renal blood flow, and kidney tissue oxygenation were measured at baseline and after resuscitation. Finally, the effect of norepinephrine on mean arterial pressure and renal blood flow was investigated. As expected, losartan lowered mean arterial pressure but not renal blood flow. Losartan did not affect renal oxygen consumption and oxygen tension. Mean arterial pressure and renal blood flow were lower after resuscitated hemorrhage. A smaller increase of renal vascular resistance in the losartan group translated to a smaller decrease in cortical oxygen tension, but no significant difference was seen in medullary oxygen tension, either between groups or after hemorrhage. The effect of norepinephrine on mean arterial pressure and renal blood flow was similar in control- and losartan-treated rats. Losartan does not decrease renal oxygenation after resuscitated hemorrhage because of a smaller increase in renal vascular resistance. Further, losartan does not decrease the efficiency of norepinephrine as a vasopressor, indicating that blood pressure may be managed effectively during losartan treatment.


1979 ◽  
Vol 56 (5) ◽  
pp. 463-469 ◽  
Author(s):  
P. Van Brummelen ◽  
M. Woerlee ◽  
M. A. D. H. Schalekamp

1. Renal blood flow, glomerular filtration rate, renal vascular resistance and filtration fraction were studied in ten patients with essential hypertension, during placebo, and after 1 week, 3, 6 and 9 months of hydrochlorothiazide. Plasma renin concentration and urinary excretion of vanillylmandelic acid were also measured. 2. Mean arterial pressure was lowered significantly during hydrochlorothiazide, the long-term effect being slightly more pronounced than the short-term effect. 3. The decrease in renal blood flow during the first week (P < 0·01) was followed by a progressive rise. After 9 months renal blood flow was above placebo level in eight of the ten patients. After an initial decrease, glomerular filtration rate returned gradually to its original value. Renal vascular resistance and filtration fraction increased during the first week and declined thereafter. After 3, 6 and 9 months renal vascular resistance was significantly lower compared with placebo values. 4. Plasma renin concentration and urinary excretion of vanillylmandelic acid increased significantly during the first week of hydrochlorothiazide. Subsequently, vanillylmandelic acid fell to below pretreatment amounts (P < 0·05), whereas plasma renin concentration remained elevated. 5. Long-term treatment of essential hypertension with hydrochlorothiazide has a favourable effect on abnormal renal haemodynamics. Besides the influence of blood pressure reduction per se, humoral and neural factors may be involved.


1997 ◽  
Vol 272 (4) ◽  
pp. H1945-H1951 ◽  
Author(s):  
M. R. Eichinger ◽  
J. M. Resta ◽  
B. R. Walker

Acute hypoxia attenuates agonist-induced constrictor and pressor responses in conscious rats, and a recent report suggests that hypoxia may also diminish myogenic reactivity in isolated, perfused rat kidneys. Thus we hypothesized that the diminished responsiveness to pressor agents during hypoxia is caused by an impairment of myogenic reactivity. Male Sprague-Dawley rats were instrumented with a pulsed Doppler flow probe on the left renal artery, an aortic vascular occluder cuff immediately above the left renal artery to control renal perfusion pressure, and catheters were inserted to measure systemic arterial blood pressure and renal arterial pressure (RAP) and for administration of agents. Animals were studied under normoxic or acute hypoxic (fractional concentration of O2 in inspired gials = 0.12) conditions and were administered phenylephrine, arginine vasopressin, or angiotensin II. To determine the myogenic (pressure-dependent) component of agonist-induced vasoconstriction, renal vascular resistance was calculated during agonist infusion with RAP uncontrolled and with RAP controlled to preinfusion levels. Significant myogenic components of agonist-induced renal vasoconstriction were evident with all pressor agents used. However, hypoxia did not attenuate agonist-induced, pressure-dependent increases in renal vascular resistance. We conclude that the reduced vasoreactivity associated with acute hypoxia is not caused by diminished myogenic reactivity.


1994 ◽  
Vol 72 (4) ◽  
pp. 394-396 ◽  
Author(s):  
Keith J. Harrington ◽  
Robert G. Allen ◽  
Jay W. Dewald

The objective of this study was to determine the dose–response effects of epinephrine, given by systemic intravenous infusion to the halothane-anesthetized newborn piglet, on renal blood flow, mean arterial blood pressure, and renal vascular resistance. Seven newborn piglets were acutely instrumented. A transit-time ultrasound flow probe was placed around the renal artery and a femoral arterial catheter was placed for blood pressure monitoring. Epinephrine was infused in doubling doses from 0.2 to 3.2 μg∙kg−1∙min−1. Mean arterial blood pressure increased from 54 mmHg (1 mmHg = 133.3 Pa) to an average of 96 mmHg at 3.2 μg∙kg−1∙min−1 of epinephrine. Renal blood flow increased from 165 mL∙min−1∙100 g−1 at baseline to 185 mL∙min−1∙100 g−1 at a dose of 0.2 μg∙kg−1∙min−1 and increased further at 0.4 and 0.8 μg∙kg−1∙min−1 to reach 261 mL∙min−1∙100 g−1. Renal blood flow began to fall at a dose of 3.2 μg∙kg−1∙min−1, remaining however, significantly above baseline (211 mL∙min−1∙100 g−1). Consequently, calculated renal vascular resistance fell as the dose was increased from 0.2 to 0.8 μg∙kg−1∙min−1 and then rose again at 1.6 and 3.2 μg∙kg−1∙min−1, being significantly above baseline at 3.2 μg∙kg−1∙min−1. These results demonstrate that epinephrine when given by systemic infusion to the halothane-anesthetized newborn pig is a renal vasodilator at low doses and causes renal vasoconstriction at moderate to high doses. Renal blood flow remained above baseline at all doses tested, and thus, within the dosage range tested, epinephrine infusion should not cause renal ischemia.Key words: epinephrine, kidney blood flow, piglet, renal vascular resistance.


Sign in / Sign up

Export Citation Format

Share Document