Subcellular localization of the Na+/H+ exchanger NHE1 in rat myocardium

1999 ◽  
Vol 276 (2) ◽  
pp. H709-H717 ◽  
Author(s):  
Kevin Petrecca ◽  
Roxana Atanasiu ◽  
Sergio Grinstein ◽  
John Orlowski ◽  
Alvin Shrier

The Na+/H+exchanger NHE1 isoform is an integral component of cardiac intracellular pH homeostasis that is critically important for myocardial contractility. To gain further insight into its physiological significance, we determined its cellular distribution in adult rat heart by using immunohistochemistry and confocal microscopy. NHE1 was localized predominantly at the intercalated disk regions in close proximity to the gap junction protein connexin 43 of atrial and ventricular muscle cells. Significant labeling of NHE1 was also observed along the transverse tubular systems, but not the lateral sarcolemmal membranes, of both cell types. In contrast, the Na+-K+-ATPase α1-subunit was readily labeled by a specific mouse monoclonal antibody (McK1) along the entire ventricular sarcolemma and intercalated disks and, to a lesser extent, in the transverse tubules. These results indicate that NHE1 has a distinct distribution in heart and may fulfill specialized roles by selectively regulating the pH microenvironment of pH-sensitive proteins at the intercalated disks (e.g., connexin 43) and near the cytosolic surface of sarcoplasmic reticulum cisternae (e.g., ryanodine receptor), thereby influencing impulse conduction and excitation-contraction coupling.

2020 ◽  
Author(s):  
Dong Gil Jang ◽  
Keun Yeong Kwon ◽  
Yeong Cheon Kweon ◽  
Byung-gyu Kim ◽  
Kyungjae Myung ◽  
...  

AbstractThe gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein alpha 1 (GJA1) is the most commonly expressed subunit. However, the roles of GJA1 in the formation and function of cilia remain unknown. Here, we examined GJA1 functions during ciliogenesis in vertebrates. GJA1 was localized to the motile ciliary axonemes or pericentriolar material (PCM) around the primary cilium. GJA1 depletion caused the severe malformation of both primary cilium and motile cilia. Interestingly, GJA1 depletion caused strong delocalization of BBS4 from the PCM and basal body and distinct distribution as cytosolic puncta. Further, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, key regulator during ciliogenesis, was immunoprecipitated with GJA1 and GJA1 knockdown caused the mis-localization and mis-accumulation of Rab11. These findings suggest that GJA1 is necessary for proper ciliogenesis by regulating the Rab11 pathway.


2009 ◽  
Vol 30 (7) ◽  
pp. 928-934 ◽  
Author(s):  
Yi Xia ◽  
Kai-zheng Gong ◽  
Ming Xu ◽  
You-yi Zhang ◽  
Ji-hong Guo ◽  
...  

Development ◽  
1991 ◽  
Vol 111 (2) ◽  
pp. 509-522
Author(s):  
R. Minkoff ◽  
S.B. Parker ◽  
E.L. Hertzberg

Gap junction distribution in the facial primordia of chick embryos at the time of primary palate formation was studied employing indirect immunofluorescence localization with antibodies to gap junction proteins initially identified in rat liver (27 × 10(3) Mr, connexin 32) and heart (43 × 10(3) Mr, connexin 43). Immunolocalization with antibodies to the rat liver gap junction protein (27 × 10(3) Mr) demonstrated a ubiquitous and uniform distribution in all regions of the epithelium and mesenchyme except the nasal placode. In the placodal epithelium, a unique non-random distribution was found characterized by two zones: a very heavy concentration of signal in the superficial layer of cells adjacent to the exterior surface and a region devoid of detectable signal in the interior cell layer adjacent to the mesenchyme. This pattern was seen during all stages of placode invagination that were examined. The separation of gap junctions in distinct cell layers was unique to the nasal placode, and was not found in any other region of the developing primary palate. One other tissue was found that exhibited this pattern-the developing neural epithelium of the brain and retina. These observations suggest the presence of region-specific signaling mechanisms and, possibly, an impedance of cell communication among subpopulations of cells in these structures at critical stages of development. Immunolocalization with antibodies to the ‘heart’ 43 × 10(3) Mr gap junction protein also revealed the presence of gap junction protein in facial primordia and neural epithelium. A non-uniform distribution of immunoreactivity was also observed for connexin 43.


Sign in / Sign up

Export Citation Format

Share Document