Interaction of angiotensin II and the insulin-like growth factor system in vascular smooth muscle cells

1999 ◽  
Vol 277 (2) ◽  
pp. H499-H507 ◽  
Author(s):  
Thomas Gustafsson ◽  
Peter Andersson ◽  
Yun Chen ◽  
Jan Olof Magnusson ◽  
Hans J. Arnqvist

We studied the effects and interactions of ANG II and the insulin-like growth factor (IGF) system in cultured rat aortic smooth muscle cells. ANG II (1 μM) and IGF-I (10 nM) stimulated both DNA and protein synthesis. The effects of the two peptides in combination were additive or more than additive. The AT1 receptor antagonist losartan (10 and 100 μM) blocked their synergistic effect on DNA synthesis. IGF binding protein (IGFBP)-1 inhibited the effect of IGF-I but not that of ANG II on DNA synthesis. IGF-I stimulated gene expression of IGFBP-2 and IGFBP-4. ANG II decreased IGF-I, IGFBP-2, and IGFBP-4 transcripts but increased the IGF-I receptor transcript. IGF-I and ANG II in combination had similar effects on gene expression as ANG II alone. The IGFBP-2 and IGFBP-4 peptides could be detected in the conditioned medium. Our results show that ANG II and IGF-I have synergistic effects on vascular smooth muscle cells and that they interact in several ways.

2005 ◽  
Vol 280 (20) ◽  
pp. 19966-19976 ◽  
Author(s):  
Nihal Kaplan-Albuquerque ◽  
Yolanda E. Bogaert ◽  
Vicki Van Putten ◽  
Mary C. Weiser-Evans ◽  
Raphael A. Nemenoff

1992 ◽  
Vol 263 (2) ◽  
pp. C420-C428 ◽  
Author(s):  
J. Saltis ◽  
A. Agrotis ◽  
A. Bobik

We have examined the interactions between transforming growth factor-beta 1 (TGF-beta 1) and epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), or platelet-derived growth factor (PDGF) isoforms PDGF-AB and PDGF-BB on the proliferation of vascular smooth muscle cells isolated from the spontaneously hypertensive rat. TGF-beta 1 alone stimulated [3H]thymidine incorporation approximately twofold without a corresponding increase in cell number. In combination, TGF-beta 1 action was synergistic in further stimulating both DNA synthesis and cell proliferation 100-300% above the responses elicited by each growth factor. To gain further insight into the mechanism responsible for this potentiation, we examined the interaction between TGF-beta 1 and EGF. The synergistic interaction between TGF-beta 1 and EGF on DNA synthesis was independent of initial cell density. This effect of TGF-beta 1 was initiated early in the G1 phase of the cell cycle and did not appear to be mediated through the mobilization of Ca2+ or alterations in c-jun mRNA expression. However, in the presence of both TGF-beta 1 and EGF, there was a sustained elevation of c-myc mRNA levels over a 24-h period. These results suggest that TGF-beta 1 may interact with other growth factors in vivo to enhance their proliferative action on vascular smooth muscle of spontaneously hypertensive rats via mechanisms dependent on c-myc mRNA expression.


1997 ◽  
Vol 272 (5) ◽  
pp. C1558-C1566 ◽  
Author(s):  
J. R. Schelling ◽  
N. Nkemere ◽  
M. Konieczkowski ◽  
K. A. Martin ◽  
G. R. Dubyak

Vascular smooth muscle cells (VSMC) contribute to the pathophysiology of hypertension through cell growth and contraction, and phospholipase C (PLC) is a critical effector enzyme in growth factor and vasoconstrictor signaling. There is indirect evidence that angiotensin II (ANG II) receptors are linked to the PLC-beta isoform signaling pathways. However, recent studies suggest that PLC-beta isoforms may not be expressed in VSMC. Our data demonstrate that in human aortic VSMC, PLC-beta 1 and PLC-gamma 1 proteins were detected by immunoblot analysis, and PLC-beta 1 mRNA was identified by reverse transcriptase-polymerase chain reaction in rat aortic VSMC. Incubation of permeabilized VSMC with anti-PLC-beta 1 or anti-Gq alpha antibodies inhibited ANG II-dependent inositol polyphosphate (IP) formation, while anti-PLC-gamma 1 antibodies did not inhibit ANG II-regulated IP formation. Conversely, anti-PLC-gamma 1 antibodies completely abolished platelet-derived growth factor (PDGF)-dependent IP generation, whereas anti-PLC-beta 1 antibodies had no effect on PDGF-induced PLC activation. Inhibition of tyrosine phosphorylation with genistein or herbimycin A did not diminish ANG II-stimulated IP formation or cytosolic free Ca2+ concentration transients, thereby confirming that ANG II signals via a PLC-gamma 1-independent mechanism. In summary, PLC-beta 1 and PLC-gamma 1 are expressed in human aortic VSMC, and PLC-beta 1 is the isoform that is critical for ANG II-regulated PLC signaling in these cells.


Sign in / Sign up

Export Citation Format

Share Document