Estimating oxygen transport resistance of the microvascular wall

2000 ◽  
Vol 279 (2) ◽  
pp. H657-H671 ◽  
Author(s):  
Arjun Vadapalli ◽  
Roland N. Pittman ◽  
Aleksander S. Popel

The problem of diffusion of O2 across the endothelial surface in precapillary vessels and its utilization in the vascular wall remains unresolved. To establish a relationship between precapillary release of O2 and vascular wall consumption, we estimated the intravascular flux of O2 on the basis of published in vivo measurements. To interpret the data, we utilized a diffusion model of the vascular wall and computed possible physiological ranges for O2 consumption. We found that many flux values were not consistent with the diffusion model. We estimated the mitochondrial-based maximum O2 consumption of the vascular wall (Mmt) and a possible contribution to O2 consumption of nitric oxide production by endothelial cells (MNO). Many values of O2 consumption predicted from the diffusion model exceeded Mmt + MNO. In contrast, reported values of O2consumption for endothelial and smooth muscle cell suspensions and vascular strips in vitro do not exceed Mmt. We conjecture that most of the reported values of intravascular O2 flux are overestimated, and the likely source is in the experimental estimates of convective O2 transport at upstream and downstream points of unbranched vascular segments.

2007 ◽  
Vol 151 (2) ◽  
pp. 195-205 ◽  
Author(s):  
C L M Silva ◽  
E K Tamura ◽  
S M D Macedo ◽  
E Cecon ◽  
L Bueno-Alves ◽  
...  

2021 ◽  
Vol 23 ◽  
pp. 205-210
Author(s):  
Mayara Caldeira-Dias ◽  
Sarah Viana-Mattioli ◽  
Jackeline de Souza Rangel Machado ◽  
Mattias Carlström ◽  
Ricardo de Carvalho Cavalli ◽  
...  

2003 ◽  
Vol 31 (11) ◽  
pp. 1337-1346 ◽  
Author(s):  
Jose A. Adams ◽  
James E. Moore, Jr. ◽  
Michael R. Moreno ◽  
Jaqueline Coelho ◽  
Jorge Bassuk ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. 65
Author(s):  
Leguina-Ruzzi ◽  
Ortiz Diban ◽  
Velarde

Type 2 diabetes affects over 340 million people worldwide. This condition can go unnoticed and undiagnosed for years, leading to a late stage where high glycaemia produces complications such as delayed wound healing. Studies have shown that 12-HHT through BLT2, accelerates keratinocyte migration and wound healing. Additionally, evidence has shown the role of nitric oxide as a pro-regenerative mediator, which is decreased in diabetes. Our main goal was to study the association between the 12-HHT/BLT2 axis and the nitric oxide production in wound healing under different glycaemia conditions. For that purpose, we used in vivo and in vitro models. Our results show that the skin from diabetic mice showed reduced BLT2 and iNOS mRNA, TEER, 12-HHT, nitrites, and tight junction levels, accompanied by higher MMP9 mRNA levels. Furthermore, a positive correlation between BLT2 mRNA and nitrites was observed. In vitro, HaCaT-BLT2 cells showed higher nitric oxide and tight junction levels, and reduced MMP9 mRNA levels, compared to mock-keratinocytes under low and high glucose condition. The wound healing capacity was associated with higher nitric oxide production and was affected by the NOS inhibition. We suggest that the BLT2 expression improves the keratinocyte response to hyperglycaemia, associated with the production of nitric oxide.


2004 ◽  
Vol 286 (3) ◽  
pp. H1043-H1056 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Mahendra Kavdia ◽  
Aleksander S. Popel

Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca2+ oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca2+ oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.


1992 ◽  
Vol 263 (6) ◽  
pp. H1880-H1887 ◽  
Author(s):  
R. M. Elias ◽  
J. Eisenhoffer ◽  
M. G. Johnston

Studies with a sheep isolated duct preparation in vivo demonstrated that the route of administration of hemoglobin was important in demonstrating its inhibitory effect on lymphatic pumping. With autologous oxyhemoglobin administered intravenously (final plasma concentration 5 x 10(-5) M), pumping was not inhibited. However, the addition of oxyhemoglobin (5 x 10(-5) M) into the reservoir (lumen of the duct) resulted in > 95% inhibition of pumping. The extraluminal administration of oxyhemoglobin (10(-5) M) to bovine mesenteric lymphatics in vitro resulted in a 40% inhibition of pumping, whereas the introduction of oxyhemoglobin (10(-5) M) into the lumen of the vessels suppressed pumping 95%. In vessels mechanically denuded of endothelium, intraluminal oxyhemoglobin inhibited pumping 50%. These results suggested that oxyhemoglobin depressed pumping through an effect on both smooth muscle and endothelium. Once pumping was inhibited with oxyhemoglobin administration, stimulation of the duct with elevations in transmural pressure restored pumping activity when endothelial cells were present. However, in the absence of endothelium, pumping decreased with increases in distending pressures. We conclude that oxyhemoglobin has a direct inhibitory effect on lymphatic smooth muscle. The ability of oxyhemoglobin to alter the pressure range over which the lymph pump operates appears to be dependent on an intact endothelium.


1996 ◽  
Vol 270 (1) ◽  
pp. H411-H415 ◽  
Author(s):  
L. Morbidelli ◽  
C. H. Chang ◽  
J. G. Douglas ◽  
H. J. Granger ◽  
F. Ledda ◽  
...  

Vascular endothelial growth factor (VEGF) is a secreted protein that is a specific growth factor for endothelial cells. We have recently demonstrated that nitric oxide (NO) donors and vasoactive peptides promoting NO-mediated vasorelaxation induce angiogenesis in vivo as well as endothelial cell growth and motility in vitro; in contrast, inhibitors of NO synthase suppress angiogenesis. In this study we investigated the role of NO in mediating the mitogenic effect of VEGF on cultured microvascular endothelium isolated from coronary postcapillary venules. VEGF induced a dose-dependent increase in cell proliferation and DNA synthesis. The role of NO was determined by monitoring proliferation or guanosine 3',5'-cyclic monophosphate (cGMP) levels in the presence and absence of NO synthase blockers. The proliferative effect evoked by VEGF was reduced by pretreatment of the cells with NO synthase inhibitors. Exposure of the cells to VEGF induced a significant increment in cGMP levels. This effect was potentiated by superoxide dismutase addition and was abolished by NO synthase inhibitors. VEGF stimulates proliferation of postcapillary endothelial cells through the production of NO and cGMP accumulation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 693-693
Author(s):  
Katherine L. Hill ◽  
Petra Obrtlikova ◽  
Diego F Alvarez ◽  
Judy A King ◽  
Qinglu Li ◽  
...  

Abstract The field of vascular regenerative medicine is rapidly growing and the demand for cell-based therapy is high. In our studies, human embryonic stem cells (hESCs) were differentiated via coculture with M2-10B4 mouse bone marrow derived stromal cells for 13–15 days. At this time, CD34+ were isolated using an immunomagnetic separation technique and further phenotyped. As shown by flow cytometric analysis, the population co-expressed typical endothelial cell surface antigens such as CD31 and Flk. Upon culture of these CD34+ cells in endothelial culture medium containing VEGF, bFGF, IGF-1, EGF, and heparin, the cells assumed a endothelial cell morphology, formed vascular like networks when placed in Matrigel, and expressed CD31, Flk1, CD146, Tie2, eNOS, vWF, and VE-cadherin (each confirmed by quantitative real time PCR, immunohistochemistry, and flow cytometry). Transmission electron micrograph images of these cells, termed hESC-ECs, showed a defined cortical filamentous rim as seen in other endothelial cells and a significant number of micro-particles being released from the cell surface. Additionally, permeability studies revealed these cells exhibit trans-electrical resistance of 1200Ω, consistent with basal barrier properties exhibited by conduit endothelial cells. These hESC-ECs also proved capable of further differentiation into smooth muscle cells, hESCSMCs. When culture conditions were changed to support SMC growth (DMEM + PDGFBB and TGF-β1), cells assumed SMC morphology including intracellular fibrils, down regulated endothelial gene transcript and protein expression, and began to express α-SMC actin, calponin, SM22, smoothelin, myocardin. Also, concomitant increases in expression of APEG-1 and CRP2/SmLIM, expressed preferentially by arterial SMCs, was found. In contrast, HUVECs placed under these SMC conditions did not display SMC characteristics. Additional studies evaluated intracellular calcium release in hESC-ECs and hESC-SMCs subjected to various pharmacological agonists. The hESC-SMC population preferentially responded to bradykinin, oxytocin, endothelin-1, histamine, and ATP, while hESC-ECs responsed to endothelin-1, histamine, bradykinin, and carbachol. Functional studies were initially done by in vitro culture of these cell populations in Matrigel. hESC-SMCs placed in Matrigel alone did not form a vascular like network. However, an improved vascular structure was seen when hESC-ECs were placed in Matrigel along with hESC-SMCs. Together, these cells formed a dense, more robust vascular network composed of thicker tube structures, indicating a more physiologically relevant model of vasculogenesis. Next in vivo studies have been initiated utilizing a mouse myocardial infarct model. NOD/SCID mice were anesthetized and subjected to ligation of the left anterior descending artery. By assessing cardiac function 3 weeks post infarction, we found that mice receiving an hESC-EC injection (1×106 cells directly into infarction sight) showed greater vascular repair and increased ejection fraction when compared to mice that did not receive an hESCEC injection [untreated control ejection fraction= 14.3% vs hESC-EC treated= 21.3%]. Currently, studies are underway evaluating combined use of hESC-ECs and hESC-SMCs in this infarct model, as we hypothesize that combined use of these cells will be more beneficial for vascular development and repair than either one population alone. Together, the phenotypic and functional studies of these hESC-derived CD34+ cells suggest these cells can act as pericytes with dual endothelial cell and SMC developmental potential and these hESC-derived pericytes can provide an important resource for developing novel cellular therapies for vascular repair.


2008 ◽  
Vol 295 (2) ◽  
pp. H499-H508 ◽  
Author(s):  
Wael F. Alzawahra ◽  
M. A. Hassan Talukder ◽  
Xiaoping Liu ◽  
Alexandre Samouilov ◽  
Jay L. Zweier

Nitric oxide (NO) has been shown to be the endothelium-derived relaxing factor (EDRF), and its impairment contributes to a variety of cardiovascular disorders. Recently, it has been recognized that nitrite can be an important source of NO; however, questions remain regarding the activity and mechanisms of nitrite bioactivation in vessels and its physiological importance. Therefore, we investigated the effects of nitrite on in vivo hemodynamics in rats and in vitro vasorelaxation in isolated rat aorta under aerobic conditions. Studies were performed to determine the mechanisms by which nitrite is converted to NO. In anesthetized rats, nitrite dose dependently decreased both systolic and diastolic blood pressure with a threshold dose of 10 μM. Similarly, nitrite (10 μM-2 mM) caused vasorelaxation of aortic rings, and NO was shown to be the intermediate factor responsible for this activity. With the use of electrochemical as well as electron paramagnetic resonance (EPR) spectroscopy techniques NO generation was measured from isolated aortic vessels following nitrite treatment. Reduction of nitrite to NO was blocked by heating the vessel, suggesting that an enzymatic process is involved. Organ chamber experiments demonstrated that aortic relaxation induced by nitrite could be blocked by both hemoglobin and soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). In addition, both electrochemical and EPR spin-trapping measurements showed that ODQ inhibits nitrite-mediated NO production. These findings thus suggest that nitrite can be a precursor of EDRF and that sGC or other heme proteins inhibited by ODQ catalyze the reduction of nitrite to NO.


Sign in / Sign up

Export Citation Format

Share Document