P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response toN-methyl-d-aspartate

2000 ◽  
Vol 279 (4) ◽  
pp. H1616-H1624 ◽  
Author(s):  
Anish Bhardwaj ◽  
Frances J. Northington ◽  
Juan R. Carhuapoma ◽  
John R. Falck ◽  
David R. Harder ◽  
...  

Epoxyeicosatrienoic acids are cerebral vasodilators produced in astrocytes by cytochrome P-450 epoxygenase activity. The P-450 inhibitor miconazole attenuates the increase in cerebral blood flow (CBF) elicited by glutamate. We evaluated whether epoxygenase activity is involved in the CBF response to activation of the N-methyl-d-aspartate (NMDA) receptor subtype by using two structurally distinct inhibitors, miconazole and N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH), a selective epoxygenase substrate inhibitor. Drugs were delivered locally through microdialysis probes in striata of anesthetized rats. Local CBF was measured by hydrogen clearance and compared with CBF in contralateral striatum receiving vehicle. Microdialysis perfusion of NMDA doubled CBF and increased nitric oxide (NO) production estimated by recovery of labeled citrulline in the dialysate during labeled arginine infusion. Perfusion of miconazole or MS-PPOH blocked the increase in CBF without decreasing citrulline recovery. Perfusion of N ω-nitro-l-arginine decreased baseline CBF and inhibited the CBF response to NMDA. Perfusion of MS-PPOH did not inhibit the CBF response to sodium nitroprusside. We conclude that both the P-450 epoxygenase and NO synthase pathways are involved in the local CBF response to NMDA receptor activation, and that the signaling pathway may be more complex than simply NO diffusion from neurons to vascular smooth muscle.

2004 ◽  
Vol 24 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Xinqi Peng ◽  
Chenyang Zhang ◽  
Nabil J. Alkayed ◽  
David R. Harder ◽  
Raymond C. Koehler

Individual inhibition of nitric oxide (NO) synthase and cytochrome P450 (CYP) epoxygenase activity attenuates cortical functional hyperemia evoked by whisker stimulation. The objectives of the present study were to determine (1) if administration of epoxygenase inhibitors attenuates cortical functional hyperemia by using a different modality of sensory activation (i.e., electrical stimulation of the rat forepaw), (2) if epoxygenase inhibition has an additive effect with NO synthase inhibition on the flow response, and (3) the cellular localization of the epoxygenase CYP2C11 in cerebral cortex. In six groups of anesthetized rats, the cortical surface was superfused for 90 minutes with (1) vehicle; (2) 1-mmol/L Nω-nitro-L-arginine (L-NNA), to inhibit NO synthase activity; (3) 20-μmol/L N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), a substrate inhibitor of P450 epoxygenase; (4) MS-PPOH plus L-NNA; (5) 20-μmol/L miconazole, a reversible inhibitor at the heme site of P450 epoxygenase; and (6) miconazole plus L-NNA. The percent increases in laser-Doppler perfusion over primary sensory cortex during 20-second forepaw stimulation were reduced by 44% to 64% in all drug-treated groups. The addition of L-NNA to MS-PPOH produced no additional reduction (64%) compared with MS-PPOH alone (64%) or L-NNA alone (60%). The addition of L-NNA to miconazole also produced no additional reduction in the flow response. In situ hybridization of CYP2C11 mRNA showed localization in astrocytes, including those adjacent to blood vessels. Thus, activity of both epoxygenase, presumably localized in astrocytes, and NO synthase is required for generating a complete cortical hyperemic response evoked by electrical forepaw stimulation. The lack of additional blood flow attenuation with the combination of the NO synthase and the distinct epoxygenase inhibitors suggests that the signaling pathways do not act in a simple parallel fashion and that other mediators may be involved in coupling cortical blood flow to neuronal activation.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

2008 ◽  
Vol 28 (7) ◽  
pp. 1369-1376 ◽  
Author(s):  
Inna Sukhotinsky ◽  
Ergin Dilekoz ◽  
Michael A Moskowitz ◽  
Cenk Ayata

Cortical spreading depression (CSD) evokes a large cerebral blood flow (CBF) increase in normal rat brain. In contrast, in focal ischemic penumbra, CSD-like periinfarct depolarizations (PID) are mainly associated with hypoperfusion. Because PIDs electrophysiologically closely resemble CSD, we tested whether conditions present in ischemic penumbra, such as tissue hypoxia or reduced perfusion pressure, transform the CSD-induced CBF response in nonischemic rat cortex. Cerebral blood flow changes were recorded using laser Doppler flowmetry in rats subjected to hypoxia, hypotension, or both. Under normoxic normotensive conditions, CSD caused a characteristic transient CBF increase (74 ± 7%) occasionally preceded by a small hypoperfusion (−4 ± 2%). Both hypoxia ( pO2 45 ± 3 mm Hg) and hypotension (blood pressure 42 ± 2 mm Hg) independently augmented this initial hypoperfusion (−14 ± 2% normoxic hypotension; −16 ± 6% hypoxic normotension; −21 ± 5% hypoxic hypotension) and diminished the magnitude of hyperemia (44 ± 10% normoxic hypotension; 43 ± 9% hypoxic normotension; 27 ± 6% hypoxic hypotension). Hypotension and, to a much lesser extent, hypoxia increased the duration of hypoperfusion and the DC shift, whereas CSD amplitude remained unchanged. These results suggest that hypoxia and/or hypotension unmask a vasoconstrictive response during CSD in the rat such that, under nonphysiologic conditions (i.e., mimicking ischemic penumbra), the hyperemic response to CSD becomes attenuated resembling the blood flow response during PIDs.


1997 ◽  
Vol 17 (12) ◽  
pp. 1309-1318 ◽  
Author(s):  
Naoaki Horinaka ◽  
Tang-Yong Kuang ◽  
Hazel Pak ◽  
Robert Wang ◽  
Jane Jehle ◽  
...  

The possibility that adenosine and ATP-sensitive potassium channels (KATP) might be involved in the mechanisms of the increases in cerebral blood flow (CBF) that occur in insulin-induced hypoglycemia was examined. Cerebral blood flow was measured by the [14C]iodoantipyrine method in conscious rats during insulin-induced, moderate hypoglycemia (2 to 3 mmol/L glucose in arterial plasma) after intravenous injections of 10 to 20 mg/kg of caffeine, an adenosine receptor antagonist, or intracisternal infusion of 1 to 2 μmol/L glibenclamide, a KATP channel inhibitor. Cerebral blood flow was also measured in corresponding normoglycemic and drug-free control groups. Cerebral blood flow was 51% higher in untreated hypoglycemic than in untreated normoglycemic rats ( P < 0.01). Caffeine had a small, statistically insignificant effect on CBF in normoglycemic rats, but reduced the CBF response to hypoglycemia in a dose-dependent manner, i.e., 27% increase with 10 mg/kg and complete elimination with 20 mg/kg. Chemical determinations by HPLC in extracts of freeze-blown brains showed significant increases in the levels of adenosine and its degradation products, inosine and hypoxanthine, during hypoglycemia ( P < 0.05). Intracisternal glibenclamide had little effect on CBF in normoglycemia, but, like caffeine, produced dose-dependent reductions in the magnitude of the increases in CBF during hypoglycemia, i.e., +66% with glibenclamide-free artificial CSF administration, +25% with 1 μmol/L glibenclamide, and almost complete blockade (+5%) with 2 μmol/L glibenclamide. These results suggest that adenosine and KATP channels may play a role in the increases in CBF during hypoglycemia.


2000 ◽  
Vol 88 (4) ◽  
pp. 1381-1389 ◽  
Author(s):  
Ivan T. Demchenko ◽  
Albert E. Boso ◽  
Thomas J. O'Neill ◽  
Peter B. Bennett ◽  
Claude A. Piantadosi

We have tested the hypothesis that cerebral nitric oxide (NO) production is involved in hyperbaric O2 (HBO2) neurotoxicity. Regional cerebral blood flow (rCBF) and electroencephalogram (EEG) were measured in anesthetized rats during O2 exposure to 1, 3, 4, and 5 ATA with or without administration of the NO synthase inhibitor ( N ω-nitro-l-arginine methyl ester), l-arginine, NO donors, or the N-methyl-d-aspartate receptor inhibitor MK-801. After 30 min of O2 exposure at 3 and 4 ATA, rCBF decreased by 26–39% and by 37–43%, respectively, and was sustained for 75 min. At 5 ATA, rCBF decreased over 30 min in the substantia nigra by one-third but, thereafter, gradually returned to preexposure levels, preceding the onset of EEG spiking activity. Rats pretreated with N ω-nitro-l-arginine methyl ester and exposed to HBO2 at 5 ATA maintained a low rCBF. MK-801 did not alter the cerebrovascular responses to HBO2at 5 ATA but prevented the EEG spikes. NO donors increased rCBF in control rats but were ineffective during HBO2 exposures. The data provide evidence that relative lack of NO activity contributes to decreased rCBF under HBO2, but, as exposure time is prolonged, NO production increases and augments rCBF in anticipation of neuronal excitation.


1996 ◽  
Vol 22 (10) ◽  
pp. 1026-1033 ◽  
Author(s):  
K. F. Waschke ◽  
M. Riedel ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
W. Kuschinsky

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hock-Kean Liew ◽  
Jon-Son Kuo ◽  
Jia-Yi Wang ◽  
Cheng-Yoong Pang

Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury.


Sign in / Sign up

Export Citation Format

Share Document