Ion transport in isolated cornea of the rabbit

1965 ◽  
Vol 209 (6) ◽  
pp. 1311-1316 ◽  
Author(s):  
K. Green

When the isolated rabbit cornea is bathed with well-stirred normal Ringer solution, only a low potential difference (PD) exists across the tissue; the initial value of 2 mv rises to 6 mv (endothelium positive) 1 hr after excision from the animal. In sodium-free Ringer solution the PD becomes negative before becoming negligible, while in chloride-free Ringer the PD rises to triple the value in normal Ringer. Flux measurements of sodium 22 show that there is an initial inequality between the net flux and the measured short-circuit current (SCC), the values of which become equal 1 hr after removal of the cornea from the animal Flux measurements of chloride 36 during this 1st hr indicate an active transport of chloride inward across the cornea, but after 1 hr the fluxes are equal in each direction. The differences of the net currents generated by the sodium and chloride transports equal the measured SCC, and the two transports have been shown to be able to exist independently.

The interior of the rumen in cattle and sheep is normally maintained at a potential of about — 40 mV relative to the blood. This potential depends primarily on the occurrence of an active transport of sodium from rumen to blood, since the potential, short-circuit current and the net sodium flux are simultaneously abolished by anoxia, ouabain and removal of sodium from the bathing solutions. There is an appreciable net flux of potassium from blood to rumen. There is also a substantial active transport of chloride in the same direction as sodium and it can be reduced by treatment with acetazolamide without affecting the potential or the sodium system. Nevertheless, sodium transport is reduced by the removal of chloride ions. Omasum epithelium is similar to rumen epithelium. However, the chloride pump appears to work in both directions in this tissue. Short-circuited omasum epithelium can also transport magnesium from omasum to blood.


1987 ◽  
Vol 252 (1) ◽  
pp. G45-G51 ◽  
Author(s):  
J. H. Sellin ◽  
R. De Soignie

Ion transport in rabbit proximal colon (PC) in vitro is dominated by a Na-Cl cotransport system stimulated by epinephrine. To further characterize the regulation of Na-Cl transport, we tested the effects of specific adrenergic agonists on ion fluxes under short-circuit conditions. Additionally, we tested the effects of the transport inhibitors bumetanide, furosemide, and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS). Basal Na and Cl absorption were essentially nil [Na net flux (JNanet) = 0.3 +/- 0.4, and Cl net flux (JClnet) = -0.5 +/- 0.5 mu eq X cm-2 X h-1, means +/- SE]. The alpha 2-agonist clonidine significantly increased net Na and Cl absorption (delta JNanet = 3.0 +/- 0.6 mu eq X cm-2 X h-1, delta JClnet = 2.0 +/- 0.4 mu eq X cm-2 X h-1) with a minimal change in short-circuit current (delta Isc = 0.1 +/- 0.1 mu eq X cm-2 X h-1). The alpha 1-agonist phenylephrine and the beta-agonist isoproterenol did not alter ion transport. The alpha 2-blocker yohimbine (YOH) had a complex, concentration-dependent effect. At low concentrations (10(-6)-10(-8) M) YOH effectively inhibited epinephrine-stimulated cotransport. Compared with 10(-8)M YOH, 10(-6) YOH blocked 90% of the epinephrine-induced increases in Na and Cl absorption.(ABSTRACT TRUNCATED AT 250 WORDS)


1967 ◽  
Vol 46 (2) ◽  
pp. 235-248
Author(s):  
W. R. HARVEY ◽  
J. A. HASKELL ◽  
K. ZERAHN

1. Flux measurements with 42K reveal that in the isolated midgut of Hyalophora cecropia 90 to 100 % of the short-circuit current is carried by the active transport of potassium from the blood-side to the lumen. 2. When K-transport is strongly depressed, either by withholding potassium from the blood side or by imposing a large positive potential on the lumen, the oxygen uptake of the isolated gut remains virtually unchanged. If the K-transport were to be energized by the negligible increase in oxygen uptake about 40 µ-equiv. of potassium would have to be transported for every µ-equiv. of extra oxygen taken up. This ratio of K-transport to oxygen uptake is thermodynamically impossible. 3. The ratio of potassium transported to total oxygen consumed when the midgut is bathed with 32 mM potassium on both sides is about 1.3 at temperatures of 25° and 15° C. The ratio must be smaller at lower potassium concentrations and is 2.0 at 73.5 mM-K, which may be approaching the maximum value. 4. Although the oxygen uptake is independent of the K-transport, the reverse is not true. There is a close dependency of K-transport on oxygen consumption. 5. K-transport by the midgut contrasts with Na-transport by the frog skin because Na-transport stimulates oxidative metabolism whereas K-transport does not. Evidently the coupling of transport to energy supply is different in the two systems.


1983 ◽  
Vol 245 (5) ◽  
pp. C388-C396 ◽  
Author(s):  
J. H. Widdicombe ◽  
I. T. Nathanson ◽  
E. Highland

The "loop" diuretics MK-196, bumetanide, piretanide, and furosemide are all potent inhibitors of Cl transport by the dog's tracheal epithelium. In short-circuited tissues, the drugs caused significant decreases in both unidirectional Cl fluxes and in the net flux of Cl toward the lumen; the change in net Cl flux was not significantly different from the change in short-circuit current. The drugs had no effect on active Na absorption. All drugs caused a significant fall in tissue conductance. All drugs, except MK-196, were more potent from the serosal bath; MK-196 was equipotent from either side of the tissue. In experiments with isolated cells, the diuretics caused no significant changes in intracellular Na and K concentrations, a fall in intracellular Cl concentration, and approximately equal falls in Na and Cl influxes. These results suggest that the site of action of these drugs is on a basolateral linked Na-Cl entry process. Additional evidence for such a linked entry process was provided by experiments in which removal of Cl reduced Na influx and removal of Na reduced Cl influx.


1983 ◽  
Vol 245 (5) ◽  
pp. F564-F568
Author(s):  
J. L. Fischer ◽  
R. F. Husted ◽  
P. R. Steinmetz

To characterize the efflux of HCO-3 across the basolateral membrane of the H+-secreting cells of the turtle bladder, we examined the effect of substitution of gluconate or methyl sulfate for Cl- on the rate of acidification (JH). JH was measured as the short-circuit current in bladders in which Na+ transport was abolished with 10(-4) M ouabain. In hemibladders bathed in normal Ringer solution (Cl- = 122 mM) JH was 44.9 microA. Substitution of the Cl- resulted in a marked reduction in JH (12.5 microA with gluconate and 7.5 microA with methyl sulfate). Addition of Cl- to the mucosal surface had no effect on JH. In contrast, serosal addition of Cl- restored JH to control. The apparent Km for Cl- in gluconate Ringer was 0.13 mM. Serosal furosemide (1 mM) inhibited JH by 55% in Cl- Ringer. We conclude that HCO-3 exit across the basolateral membrane of the H+-secreting cell occurs via a Cl-HCO3 exchanger that has a high affinity for chloride.


1993 ◽  
Vol 264 (4) ◽  
pp. R703-R707 ◽  
Author(s):  
M. D. Duvall ◽  
S. M. O'Grady

The regional transport properties of the porcine gallbladder epithelium were studied using Ussing chambers in which tissues were bathed in porcine Ringer solution. Under basal conditions, tissues from the neck absorbed Na and Cl. Fundic tissues also absorbed Na, but net Cl transport was not different from zero. Serosal norepinephrine (NE; 0.1 microM) stimulated Na and Cl absorption in the neck but only Cl absorption in the fundus. The effects of NE on Na and Cl transport were blocked by pretreatment with yohimbine, suggesting that alpha 2-adrenoceptors mediate the transport-related actions of this neurotransmitter. Serosal isoproterenol (0.1 microM) produced a tetrodotoxin-insensitive, propranolol-sensitive increase in the short-circuit current (Isc) in fundic tissues but not in tissues from the neck. The beta 2-adrenergic agonist salbutamol produced a response similar to that of isoproterenol. However, the beta 1-adrenergic agonist dobutamine had no effect. Isoproterenol was 5.8-fold more potent than salbutamol in increasing the Isc. A possible explanation for the regional effects of beta-agonists is that beta-adrenoceptors are localized to epithelial cells in the fundic region. These results and results obtained previously suggest regional differences in basal Na and Cl transport across the porcine gallbladder epithelium and that both alpha 2- and beta 2-adrenoceptors act to regulate ion transport in this tissue.


1983 ◽  
Vol 54 (5) ◽  
pp. 1335-1339 ◽  
Author(s):  
F. D. McCool ◽  
J. P. Zorn ◽  
M. G. Marin

We studied the effect of ethanol on the electrical and ion transport properties of dog tracheal epithelium using Ussing's short-circuit technique. There was a significant reduction of short-circuit current and electrical potential difference and a tendency of electrical resistance to increase in response to increasing concentrations of ethanol in the bathing solutions. Threshold changes in the electrical properties were noted at an ethanol concentration of 3.3 microliter/ml (260 mg/100 ml). Ethanol did not produce these changes in electrical properties when Cl- and Na+ were substituted in the bathing media with either choline or SO2-(4). In five paired tissue preparations, ethanol (13.3 microliters/ml) significantly reduced the net flux of Cl- toward the lumen from 2.68 +/- 0.62 to 1.00 +/- 0.69 (SE) mu eq X cm-2 X h-1, due primarily to a reduced unidirectional flux of Cl- from submucosa to lumen. These observations demonstrate that ethanol has an effect on the ion transport and electrical properties of dog tracheal epithelium at concentrations that may be of clinical relevance.


1989 ◽  
Vol 256 (6) ◽  
pp. R1184-R1191
Author(s):  
R. J. Lowy ◽  
D. C. Dawson ◽  
S. A. Ernst

Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.


1959 ◽  
Vol 42 (3) ◽  
pp. 461-473 ◽  
Author(s):  
I. L. Cooperstein ◽  
C. Adrian M. Hogben

The unidirectional fluxes of sodium, chloride, and of the bicarbonate and CO2 pair were determined across the isolated large intestine of the bullfrog, Rana catesbiana. The isolated large intestine of the frog is characterized by a mean transmembrane potential of 45 mv., serosal surface positive with respect to mucosal. The unidirectional sodium flux from mucosal to serosal surface was found to be equal to the short-circuit current, thus the net flux was less than the simultaneous short-circuit current. This discrepancy between active sodium transport and short-circuit current can be attributed to the active transport of cation in the same direction as sodium and/or the active transport of anion in the opposite direction. The unidirectional fluxes of chloride and the bicarbonate and CO2 pair revealed no evidence for active transport of either anion. A quantitative study of chloride fluxes at 45 mv. revealed a flux ratio of 1.8 which is considerably less than a ratio of 6 expected for free passive diffusion. It was concluded that a considerable proportion of the isotopic transfer of chloride could be attributed to "exchange diffusion." Study of the electrical properties of the isolated frog colon reveals that it can be treated as a simple D. C. resistance over the range of -20 to +95 mv.


1975 ◽  
Vol 229 (6) ◽  
pp. 1520-1525 ◽  
Author(s):  
PJ Bentley ◽  
OA Candia

The polyene antibiotic amphotericin B decreases the PD and short-circuit current (SCC) across the amphibian lens in vitro. It was only effective when placed in the solution at the anterior side and its effect was reversible. Amphotericin B caused a large decline in the PD across the anterior surface of the lens and a smaller reduction in the PD across the posterior side. This seems to be due to a direct decrease of the electrical resistance of the anterior face. The effects required the presence of sodium in the Ringer solution bathing the anterior surface. The translenticular Na fluxes were increased in both directions so that the net flux changed little. Amphotericin B produced a considerable increase in the rate of accumulation of sodium and loss of potassium by the lens. The oxygen consumption of the lens was unchanged by amphotericin B. Amphotericin B appears to act on the lens epithelium by selectively increasing its passive sodium permeability.


Sign in / Sign up

Export Citation Format

Share Document