Age-dependent mechanical and biochemical responses to glucagon

1976 ◽  
Vol 230 (6) ◽  
pp. 1590-1593 ◽  
Author(s):  
G Ahumada ◽  
BE Sobel ◽  
WF Friedman

The age-dependent relationships between glucagon-induced alterations in myocardial mechanics and adenylate cyclase activity in fetal and newborn lambs and adult sheep were evaluated. Glucagon substantially augmented the force of contraction of ventricular myocardium isolated from the adult but not from the fetus or newborn. Similarly, substantial increases in the spontaneous frequency of contraction and tension were observed in adult atrial strips, but not in the fetus or newborn. Comparable activities of phosphodiesterase were observed in extracts from fetal and adult myocardium and were unaltered by the addition of glucagon. Adenylate cyclase activity in adult myocardial homogenate and particulate fractions was comparable to that of fetal tissue. Glucagon stimulation of the particulate fraction produced no change in fetal adenylate cyclase activity whereas a 43% increase in activity was observed in preparations from adult tissue. Sodium fluoride and epinephrine augmented adenylate cyclase activity in both fetal and adult myocardium. Thus, glucagon produced age-dependent, parallel changes in heart rate, active tension development, and particulate fraction adenylate cyclase activity, suggesting that these chronotropic and inotropic responses are indeed mediated by adenylate cyclase and that lack of response in the fetus reflects the absence of mature glucagon receptor sites.

1978 ◽  
Vol 174 (1) ◽  
pp. 179-190 ◽  
Author(s):  
I Dipple ◽  
M D Houslay

1. The local anaesthetic benzyl alcohol progressively activated glucagon-stimulated adenylate cyclase activity up to a maximum at 50 mM-benzyl alcohol. Further increases in benzyl alcohol concentration inhibited the activity. The fluoride-stimulated adenylate cyclase activity was similarly affected except for an inhibition of activity occurring at low benzyl alcohol concentrations (approx. 10 mM. 2. The fluoride-stimulated adenylate cyclase activity of a solubilized enzyme preparation was unaffected by any of the benzyl alcohol concentrations tested. 3. Increases in 3-phenylpropan-1-ol and 5-phenylpentan-1-ol concentrations progressively activated both the fluoride- and glucagon-stimulated adenylate cyclase activities up to a maximum, above which further increases in alcohol concentration inhibited the activities. 4. The ‘break’ points in Arrhenius plots of glucagon-stimulated adenylate cyclase activity in native plasma membranes, and in plasma membranes fused with synthetic dimyristoyl phosphatidylcholine so as to constitute 60% of the total lipid pool, were decreased by approx. 6 degrees C by addition of 40 mM-benzyl alcohol. This was accompanied by a fall in the associated activation energies. 6. Arrhenius plots of fluoride-stimulated adenylate cyclase activity in the presence and absence of 40 mM-benzyl alcohol were linear, although addition of benzyl alcohol caused a dramatic decrease in the associated activation energy of the reaction. 7. 5′-Nucleotidase activity was stimulated by benzyl alcohol, and the ‘break’ point in the Arrhenius plot of its activity was decreased by about 6 degrees C by addition of 40 mM-benzyl alcohol to the assay. 8. It is suggested that benzyl alcohol effects a fluidization of the bilayer, which is clearly demonstrated by its ability to lower the temperature of a lipid phase separation occurring at 28 degrees C in the outer half of the bilayer to around 22 degrees C. The increase in bilayer fluidity relieves a physical constraint on the membrane-bound adenylate cyclase, activating the enzyme. 9. The various inhibition phenomena are discussed in detail, together with the suggestion that the interaction between the uncoupled catalytic unit of adenylate cyclase and the lipids of the bilayer is altered on its physical coupling to the glucagon receptor.


1982 ◽  
Vol 206 (1) ◽  
pp. 97-102 ◽  
Author(s):  
P Thams ◽  
K Capito ◽  
C J Hedeskov

The effects of Ca2+-calmodulin on adenylate cyclase activity in EGTA-washed, 27000 g particulate fractions of mouse and rat pancreatic islets were studied. Ca2+ (10 microM)-calmodulin (1 microM) stimulated adenylate cyclase activity 53.1 +/- 5.2 (N = 6)% in the particulate fraction of rat islets. Trifluoperazine (50 microM), a specific inhibitor of calmodulin, inhibited the Ca2+-calmodulin activation of the adenylate cyclase activity of this fraction of rat islets. These results confirm previous reports dealing with Ca2+-Calmodulin and rat islet adenylate cyclase [Valverde, Vandermeers. Anjaneyulu & Malaisse (1979) Science 206, 225-227; Sharp, Wiedenkeller, Kaelin, Siegel & Wollheim (1980) Diabetes 29, 74-77]. In contrast, however, Ca2+ (1-100 microM)-calmodulin (1-10 microM) did not stimulate the adenylate cyclase activity in the EGTA-washed particulate fraction of mouse islets, and trifluoperazine (50 microM) did not inhibit the adenylate cyclase activity of this fraction of mouse islets, although some remaining calmodulin [0.18 +/- 0.05 (n = 3) microgram/mg of protein] could be demonstrated. GTP (10 microM) enhanced islet adenylate cyclase activity considerably, but did not confer any sensitivity towards Ca2+-calmodulin on mouse islet adenylate cyclase. The results question the role of calmodulin in the Ca2+-dependent rise in cyclic AMP evoked by glucose in pancreatic islets.


1995 ◽  
Vol 307 (1) ◽  
pp. 281-285 ◽  
Author(s):  
A Savage ◽  
L Zeng ◽  
M D Houslay

An immobilized hepatocyte preparation was used to show that both vasopressin and glucagon could desensitize the ability of glucagon to increase intracellular cyclic AMP concentrations. This process was not dependent on any influx of extracellular Ca2+ and was not mediated by any rise in the intracellular level of Ca2+. The protein kinase C-selective inhibitors chelerythrine, staurosporine and calphostin C acted as potent inhibitors of the desensitization process but with various degrees of selectivity regarding their ability to inhibit the desensitizing actions of glucagon and vasopressin. The protein phosphatase inhibitor okadaic acid was just as potent as vasopressin and glucagon in causing desensitization. Treatment of hepatocyte membranes with alkaline phosphatase restored to near control levels the ability of glucagon to stimulate adenylate cyclase activity in membranes from both glucagon- and vasopressin-treated (desensitized) hepatocytes. It is suggested that the desensitization of glucagon-stimulated adenylate cyclase activity involves a reversible phosphorylation reaction with the likely target being the glucagon receptor itself.


1976 ◽  
Vol 436 (2) ◽  
pp. 495-504 ◽  
Author(s):  
M.D. Houslay ◽  
T.R. Hesketh ◽  
G.A. Smith ◽  
G.B. Warren ◽  
J.C. Metcalfe

1992 ◽  
Vol 286 (3) ◽  
pp. 681-686 ◽  
Author(s):  
L E Nagy ◽  
S E F DeSilva

Increasing evidence suggests that ethanol-induced changes in cyclic AMP (cAMP) signal transduction play a critical role in the acute and chronic effects of ethanol. Here we have investigated the effects of ethanol on cAMP signal transduction in primary cultures of rat hepatocytes. Acute exposure to ethanol had a biphasic effect on glucagon-receptor-dependent cAMP production in intact cells: 25-50 mM-ethanol decreased cAMP, whereas treatment with 100-200 mM-ethanol increased cAMP. After chronic exposure to 50-200 mM-ethanol for 48 h in culture, glucagon-receptor-dependent cAMP levels were increased, but no change in glucagon receptor number was observed. These effects of ethanol were independent of ethanol oxidation. Chronic ethanol treatment also increased adenosine-receptor- and forskolin-stimulated cAMP production. Increased cAMP production was also observed upon stimulation of adenylate cyclase with glucagon, forskolin and F- in membranes isolated from cells cultured with 100 mM-ethanol for 48 h. However, no differences were observed in basal and MnCl2-stimulated adenylate cyclase activity. The quantity of alpha i protein was decreased by 35% after chronic ethanol treatment, but no change in the quantity of alpha s protein was detected. Decreased alpha i protein was associated with a decrease in G(i) function, as assessed by the ability of 0.1 nM-guanosine 5′-[beta gamma-imido]triphosphate and 1 microM-somatostatin to inhibit forskolin-stimulated adenylate cyclase activity. Taken together, these results suggest that chronic exposure to ethanol increases receptor-dependent cAMP production in hepatocytes by decreasing the quantity of alpha i protein at the plasma membrane and thereby decreasing the inhibitory effects of G(i) on adenylate cyclase activity.


Sign in / Sign up

Export Citation Format

Share Document