phosphorylation reaction
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Long ◽  
Chong Huang ◽  
Yun-Tao Zheng ◽  
Zhao-Yu Li ◽  
Liang-Hua Jie ◽  
...  

AbstractThe development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C–H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C–H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds. The C–P bond is formed through the reaction of arenes with anodically generated P-radical cations, a class of reactive intermediates remained unexplored for synthesis despite intensive studies of P-radicals. The high reactivity of the P-radical cations coupled with the mild conditions of the electrosynthesis ensures not only efficient reactions of arenes of diverse electronic properties but also selective late-stage functionalization of complex natural products and bioactive compounds. The synthetic utility of the electrochemical method is further demonstrated by the continuous production of 55.0 grams of one of the phosphonate products.


2021 ◽  
Vol 22 (17) ◽  
pp. 9631
Author(s):  
Hua-Bin Yuan ◽  
Ren-Cheng Tang ◽  
Cheng-Bing Yu

The functionalization of microcrystalline cellulose (MCC) is an important strategy for broadening its application fields. In the present work, MCC was functionalized by phosphorylation reaction with phytic acid (PA) for enhanced flame retardancy. The conditions of phosphorylation reaction including PA concentration, MCC/PA weight ratio and temperature were discussed, and the thermal degradation, heat release and char-forming properties of the resulting PA modified MCC were studied by thermogravimetric analysis and pyrolysis combustion flow calorimetry. The PA modified MCC, which was prepared at 90 °C, 50%PA and 1:3 weight ratio of MCC to PA, exhibited early thermal dehydration with rapid char formation as well as low heat release capability. This work suggests a novel strategy for the phosphorylation of cellulose using PA and reveals that the PA phosphorylated MCC can act as a promising flame retardant material.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yaping Yan ◽  
Shuchao Ren ◽  
Yanchao Duan ◽  
Chenyu Lu ◽  
Yuyu Niu ◽  
...  

AbstractParkinson’s disease (PD) is the second most prevalent neurodegenerative disease. However, it is unclear whether microbiota and metabolites have demonstrated changes at early PD due to the difficulties in diagnosis and identification of early PD in clinical practice. In a previous study, we generated A53T transgenic monkeys with early Parkinson’s symptoms, including anxiety and cognitive impairment. Here we analyzed the gut microbiota by metagenomic sequencing and metabolites by targeted gas chromatography. The gut microbiota analysis showed that the A53T monkeys have higher degree of diversity in gut microbiota with significantly elevated Sybergistetes, Akkermansia, and Eggerthella lenta compared with control monkeys. Prevotella significantly decreased in A53T transgenic monkeys. Glyceric acid, L-Aspartic acid, and p-Hydroxyphenylacetic acid were significantly elevated, whereas Myristic acid and 3-Methylindole were significantly decreased in A53T monkeys. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (KO0131) and the oxidative phosphorylation reaction (KO2147) were significantly increased in metabolic pathways of A53T monkeys. Our study suggested that the transgenic A53T and α-syn aggregation may affect the intestine microbiota and metabolites of rhesus monkeys, and the identified five compositional different metabolites that are mainly associated with mitochondrial dysfunction may be related to the pathogenesis of PD.


2021 ◽  
Author(s):  
Weina Liu ◽  
Simone Giaveri ◽  
Daniel Ortiz ◽  
Francesco Stellacci

Nature has the ability of circularly re-using its components to produce molecules and materials it needs. An example is the ability of most living organisms of digesting proteins they feed off into amino acids and then using such amino acids in the ribosomal synthesis of new proteins. Recently, we have shown that such recycling of proteins can be reproduced outside living organisms. The key feature of proteins that allows for this type of recycling is their being sequence-defined polymers. Arguably, The most famous sequence-defined polymer in Nature is DNA. Here we show that it is possible starting from sheared calf-DNA to obtain all the four nucleotides as monophosphate-nucleotides (dNMPs). These dNMPs were phosphorylated in a one-pot, multi-enzymes, phosphorylation reaction to generate triphosphate-nucleotides (dNTPs). Finally, we used the dNTPs so achieved (with a global yield of ~60%) as reagents for PCR (polymerase chain reaction) and quantitative PCR (qPCR) to produce target DNA strands. This approach is an efficient, convenient, and environmentally friendly way to produce dNTPs and DNA through recycling according to the paradigm of circular economy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanoko Takahashi ◽  
Takahiro Niki ◽  
Emari Ogawa ◽  
Kiku Fumika ◽  
Yu Nishioka ◽  
...  

AbstractStimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from virus or self-DNA from mitochondria/nuclei. In response to emergence of such DNAs in the cytosol, STING translocates from the endoplasmic reticulum to the Golgi, and activates TANK-binding kinase 1 (TBK1) at the trans-Golgi network (TGN). Activated TBK1 then phosphorylates STING at Ser365, generating an interferon regulatory factor 3-docking site on STING. How this reaction proceeds specifically at the TGN remains poorly understood. Here we report a cell-free reaction in which endogenous STING is phosphorylated by TBK1. The reaction utilizes microsomal membrane fraction prepared from TBK1-knockout cells and recombinant TBK1. We observed agonist-, TBK1-, “ER-to-Golgi” traffic-, and palmitoylation-dependent phosphorylation of STING at Ser365, mirroring the nature of STING phosphorylation in vivo. Treating the microsomal membrane fraction with sphingomyelinase or methyl-β-cyclodextrin, an agent to extract cholesterol from membranes, suppressed the phosphorylation of STING by TBK1. Given the enrichment of sphingomyelin and cholesterol in the TGN, these results may provide the molecular basis underlying the specific phosphorylation reaction of STING at the TGN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michika Sawada ◽  
Kandi Sridhar ◽  
Yasuharu Kanda ◽  
Shinya Yamanaka

AbstractWe report a synthesis strategy for pure hydroxyapatite (HAp) using an amorphous calcium carbonate (ACC) colloid as the starting source. Room-temperature phosphorylation and subsequent calcination produce pure HAp via intermediate amorphous calcium phosphate (ACP). The pre-calcined sample undergoes a competitive transformation from ACC to ACP and crystalline calcium carbonate. The water content, ACC concentration, Ca/P molar ratio, and pH during the phosphorylation reaction play crucial roles in the final phase of the crystalline phosphate compound. Pure HAp is formed after ACP is transformed from ACC at a low concentration (1 wt%) of ACC colloid (1.71 < Ca/P < 1.88), whereas Ca/P = 1.51 leads to pure β-tricalcium phosphate. The ACP phases are precursors for calcium phosphate compounds and may determine the final crystalline phase.


Author(s):  
Anne Usvalampi ◽  
He Li ◽  
Alexander D. Frey

Glucose 6-phosphate is the phosphorylated form of glucose and is used as a reagent in enzymatic assays. Current production occurs via a multi-step chemical synthesis. In this study we established a fully enzymatic route for the synthesis of glucose 6-phosphate from cellulose. As the enzymatic phosphorylation requires ATP as phosphoryl donor, the use of a cofactor regeneration system is required. We evaluated Escherichia coli glucokinase and Saccharomyces cerevisiae hexokinase (HK) for the phosphorylation reaction and Pseudomonas aeruginosa polyphosphate kinase 2 (PPK2) for ATP regeneration. All three enzymes were characterized in terms of temperature and pH optimum and the effects of substrates and products concentrations on enzymatic activities. After optimization of the conditions, we achieved a 85% conversion of glucose into glucose 6-phosphate using the HK/PPK2 activities within a 24 h reaction resulting in 12.56 g/l of glucose 6-phosphate. Finally, we demonstrated the glucose 6-phosphate formation from microcrystalline cellulose in a one-pot reaction comprising Aspergillus niger cellulase for glucose release and HK/PPK2 activities. We achieved a 77% conversion of released glucose into glucose 6-phosphate, however at the expense of a lower glucose 6-phosphate yield of 1.17 g/l. Overall, our study shows an alternative approach for synthesis of glucose 6-phosphate that can be used to valorize biomass derived cellulose.


2021 ◽  
Vol 55 (3-4) ◽  
pp. 385-401
Author(s):  
YASAR KEMAL RECEPOGLU ◽  
ASLI YÜKSEL

"In this study, pristine cellulose was functionalized by the phosphorylation reaction to make it suitable for lithium separation. After characterization studies of the synthesized adsorbent with SEM, EDX, FTIR, TGA and XPS, the effects of various parameters on the lithium uptake capacity of the adsorbent were examined. The analysis of equilibrium data by several adsorption models showed that maximum adsorption capacity of the adsorbent was found to be 9.60 mg/g at 25 °C by the Langmuir model. As initial concentration and contact time increased, adsorption capacity also increased, however, mild temperature (25-35 °C) and pH (5-6) were better for the adsorption of lithium. 80% of lithium adsorption within three minutes proved the fast kinetic nature of the adsorbent. A 99.5% desorption efficiency of lithium was achieved with 0.5 M H2SO4, among HCl and NaCl with different molarities. Phosphorylated cellulose was shown to be a favorable adsorbent for the recovery of lithium from aqueous solutions."


2021 ◽  
Author(s):  
Kanoko Takahashi ◽  
Takahiro Niki ◽  
Emari Ogawa ◽  
Kiku Fumika ◽  
Yu Nishioka ◽  
...  

Stimulator of interferon genes (STING) is essential for the type I interferon response induced by microbial DNA from virus or self-DNA from mitochondria/nuclei. In response to emergence of such DNAs in the cytosol, STING translocates from the endoplasmic reticulum (ER) to the Golgi, and activates TANK-binding kinase 1 (TBK1) at the trans-Golgi network (TGN). Activated TBK1 then phosphorylates STING at Ser365, generating an interferon regulatory factor 3 (IRF3)-docking site on STING. How this reaction proceeds specifically at the TGN remains poorly understood. Here we report a cell-free reaction in which endogenous STING is phosphorylated by TBK1. The reaction utilizes microsomal membrane fraction prepared from TBK1-knockout (KO) cells and recombinant TBK1. We observed agonist-, TBK1-, "ER-to-Golgi" traffic-, and palmitoylation-dependent phosphorylation of STING at Ser365, mirroring the nature of STING phosphorylation in vivo. Treating the microsomal membrane fraction with sphingomyelinase or methyl-β-cyclodextrin, an agent to extract cholesterol from membranes, suppressed the phosphorylation of STING by TBK1. Given the enrichment of sphingomyelin and cholesterol in the TGN, these results may provide the molecular basis underlying the specific phosphorylation reaction of STING at the TGN.


2020 ◽  
pp. 1-14
Author(s):  
María J. Benítez ◽  
Raquel Cuadros ◽  
Juan S. Jiménez

Background: Tau is a microtubule associated protein that regulates the stability of microtubules and the microtubule-dependent axonal transport. Its hyperphosphorylated form is one of the hallmarks of Alzheimer’s disease and other tauopathies and the major component of the paired helical filaments that form the abnormal proteinaceous tangles found in these neurodegenerative diseases. It is generally accepted that the phosphorylation extent of tau is the result of an equilibrium in the activity of protein kinases and phosphatases. Disruption of the balance between both types of enzyme activities has been assumed to be at the origin of tau hyperphosphorylation and the subsequent toxicity and progress of the disease. Objective: We explore the possibility that, beside the phosphatase action on phosphorylated tau, the catalytic subunit of PKA catalyzes both tau phosphorylation and also tau dephosphorylation, depending on the ATP/ADP ratio. Methods: We use the shift in the relative electrophoretic mobility suffered by different phosphorylated forms of tau, as a sensor of the catalytic action of the enzyme. Results: The results are in agreement with the long-known thermodynamic reversibility of the phosphorylation reaction (ATP + Protein = ADP+Phospho-Protein) catalyzed by PKA and many other protein kinases. Conclusion: The results contribute to put the compartmentalized energy state of the neuron and the mitochondrial-functions disruption upstream of tau-related pathologies.


Sign in / Sign up

Export Citation Format

Share Document